Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band
Abstract
1. Introduction
2. Design and Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anuradha, S.; Balakrishnan, J. Resonance Based Discrimination Of Stealth Targets Coated With Radar Absorbing Material (RAM). Prog. Electromagn. Res. M 2021, 99, 69–79. [Google Scholar] [CrossRef]
- Haystead, J. Passive Radar Technology—A Response to Stealth? J. Electron. 2019, 42, 24–30. [Google Scholar]
- Baek, S.M.; Lee, W.J. Design method for radar absorbing structures using reliability-based design optimization of the composite material properties. Compos. Struct. 2021, 262, 113559. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Yang, H.; Wang, P.; Chen, M.; Lei, H.; Fang, D. Broadband radar absorbing composites: Spatial scale effect and environmental adaptability. Compos. Sci. Technol. 2020, 197. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Hua, M.; Kuang, J.; Ma, Y.; Guo, Z.; Xie, W. Broadband radar absorbing characteristic based on periodic hollow truncated cone structure. Phys. B Condens. Matter 2020, 595, 412368. [Google Scholar] [CrossRef]
- Yunasfi, Y.; Mashadi, M.; Mulyawan, A.; Adi, W.A. Synthesis of NiLaxFe(2-x)O4System as Microwave Absorber Materials by Milling Technique. J. Electron. Mater. 2020, 49, 7272–7278. [Google Scholar] [CrossRef]
- Jeong, G.-W.; Noh, Y.-H.; Choi, W.-H.; Shin, J.-H.; Kweon, J.-H.; Yook, J.-G.; Nam, Y.-W. Electromagnetic-mechanical repair patch of radar-absorbing structure with electroless nickel–plated glass fabric damaged by lightning strike. J. Compos. Mater. 2020, 55, 989–1002. [Google Scholar] [CrossRef]
- Rumiyanti, L.; Wandira, I.; Adi, W.A.; Junaidi; Sembiring, S. Structure analysis of electromagnetic waves absorbing material a lanthanum manganite system of (La0.8Ba0.2)(Mn(1-x)/2ZnxFe(1-x)/2)O3. J. Phys. Conf. Ser. 2021, 1751, 012069. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, Q.; Song, K.; Ding, J.; Shi, C.; He, F. Rational design of FeCo imbedded 3D porous carbon microspheres as broadband and lightweight microwave absorbers. J. Mater. Sci. 2020, 56, 2212–2225. [Google Scholar] [CrossRef]
- Zhang, M.; Han, C.; Cao, W.-Q.; Cao, M.-S.; Yang, H.-J.; Yuan, J. A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor. Nano-Micro Lett. 2020, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-P.; Zhu, L.-Q.; Gu, J.; Liu, H.-C. Microwave absorption properties of fabric coated absorbing material using modified carbonyl iron power. Compos. Part B Eng. 2011, 42, 626–630. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, B.; Gao, W.; Xu, Y.; Wang, X.; Wu, Q. An effective methodology to design scale model for magnetic absorbing coatings based on ORL. Results Phys. 2017, 7, 1698–1704. [Google Scholar] [CrossRef]
- Qing, Y.; Wen, Q.; Luo, F.; Zhou, W. Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 2016, 4, 4853–4862. [Google Scholar]
- Zhou, J.H.; Huo, L.X.; Li, W.W.; You, B.Q.; Li, Y.L.; Li, H.X. A Magnetic-Controlled Detection System for Radar Absorbing Coatings. Adv. Mater. Res. 2013, 718-720, 393–398. [Google Scholar] [CrossRef]
- Chen, F.; Luo, H.; Cheng, Y.; Liu, J.; Wang, X.; Gong, R. Fe/Fe3O4@N-Doped Carbon Hexagonal Plates Decorated with Ag Nanoparticles for Microwave Absorption. ACS Appl. Nano Mater. 2019, 2, 7266–7278. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, F.; Zhou, W.; Zhu, D. Dielectric and electromagnetic wave absorbing properties of TiC/epoxy composites in the GHz range. Ceram. Int. 2014, 40, 10749–10754. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, W.; Nan, H.; Dong, J.; Qing, Y.; Luo, F.; Zhu, D. Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption–ScienceDirect. J. Eur. Ceram. Soc. 2020, 40, 728–734. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Li, W.; Li, J.; Yu, H.; Liu, L.; Wu, G.; Yang, T.; Luo, L. Preparation of boron nitride nanosheet-coated carbon fibres and their enhanced antioxidant and microwave-absorbing properties. RSC Adv. 2018, 8, 17944–17949. [Google Scholar] [CrossRef]
- Yuan, X.J.; Zha, B.L.; Wang, H.G. Dielectric and Infrared Properties of Plasma Sprayed Nano β-SiC/Al2O3 Agglomerate Composite Absorbing Coatings. Adv. Mater. Res. 2013, 634–638, 1901–1905. [Google Scholar] [CrossRef]
- Wu, G.; He, Y.; Zhan, H.; Shi, Q.; Wang, J. A novel Fe3O4/carbon nanotube composite film with a cratered surface structure for effective microwave absorption. J. Mater. Sci. Mater. Electron. 2020, 31, 11508–11519. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, F.; Zhou, W.; Jia, H.; Zhu, D. Design of a thin and broadband microwave absorber using double layer frequency selective surface. J. Alloys Compd. 2017, 699, 534–539. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, W.; Zhu, L.; Qing, Y.; Huang, Z.; Luo, F.; Zhou, W. Electromagnetic-wave absorption property of Cr2O3–TiO2 coating with frequency selective surface. J. Alloys Compd. 2019, 803, 111–117. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, Z.; Wen, Q.; Luo, F. CaCu3Ti4O12 particles and MWCNT-filled microwave absorber with improved microwave absorption by FSS incorporation. Appl. Phys. A 2016, 122, 640. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, X.-Z.; Zhou, D.; Du, Z.; Huang, X. A Dual-Layer Radar Absorbing Material With Fully Embedded Square-Holes Frequency Selective Surface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3200–3203. [Google Scholar] [CrossRef]
- Gill, N.; Puthucheri, S.; Singh, D.; Agarwala, V. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz. J. Mater. Sci. Mater. Electron. 2016, 28, 1259–1270. [Google Scholar] [CrossRef]
- Liao, Z.; Gong, R.; Nie, Y.; Wang, T.; Wang, X. Absorption enhancement of fractal frequency selective surface absorbers by using microwave absorbing material based substrates. Photon. Nanostruct. Fundam. Appl. 2011, 9, 287–294. [Google Scholar] [CrossRef]
- McGuigan, N.; Conway, G.; Cahill, R.; Zelenchuk, D.; Zabri, S. Experimental characterisation of near field backscatter from thin resistively loaded FSS absorbers. Electron. Lett. 2017, 53, 1561–1562. [Google Scholar] [CrossRef]
- Li, J.-S. High absorption terahertz-wave absorber consisting of dual-C metamaterial structure. Microw. Opt. Technol. Lett. 2013, 55, 1185–1189. [Google Scholar]
- Khurram, A.A.; Rakha, S.A.; Ali, N.; Asim, M.T.; Guorui, Z.; Munir, A. Microwave Absorbing Properties of Lightweight Nanocomposite/Honeycomb Sandwich Structures. J. Nanotechnol. Eng. Med. 2015, 6, 011006. [Google Scholar] [CrossRef]
- Ren, W.; Nie, Y.; Xiong, X.; Zhou, Y.; Gong, R. Enhancing and broadening absorption properties of frequency selective surfaces absorbers using FeCoB-based thin film. J. Appl. Phys 2012, 111 Pt 3, 07E703. [Google Scholar] [CrossRef]
- Zheng, Y.; Jia, Y.; Li, H.; Wu, Z.; Dong, X. Enhanced piezo-electro-chemical coupling of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis. J. Mater. Sci. 2020, 55, 14787–14797. [Google Scholar] [CrossRef]
- Xu, X.; Xiao, L.; Wu, Z.; Jia, Y.; Ye, X.; Wang, F.; Yuan, B.; Yu, Y.; Huang, H.; Zou, G. Harvesting vibration energy to piezo-catalytically generate hydrogen through Bi2WO6 layered-perovskite. Nano Energy 2020, 78, 105351. [Google Scholar] [CrossRef]
- Zhao, H.-B.; Fu, Z.-B.; Chen, H.-B.; Zhong, M.-L.; Wang, C.-Y. Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route. ACS Appl. Mater. Interfaces 2016, 8, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Cheng, H.F. Design, Preparation and Microwave-Absorbing Properties of Sandwich-Structure Radar-Absorbing Materials Reinforced by Glass and SiC Fibres. Mater. Sci. Forum 2014, 788, 573–579. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Zu, M. Enhanced microwave-absorbing property of precursor infiltration and pyrolysis derived SiCf/SiC composites at X band: Role of carbon-rich interphase. J. Am. Ceram. Soc. 2018, 101, 3402–3413. [Google Scholar] [CrossRef]
- Qing, Y.; Nan, H.; Jia, H.; Min, D.; Zhou, W.; Luo, F. Aligned Fe microfiber reinforced epoxy composites with tunable electromagnetic properties and improved microwave absorption. J. Mater. Sci. 2018, 54, 4671–4679. [Google Scholar] [CrossRef]
- Liu, Q.-W.; Wang, L.-Z.; Zhong, P.-Z.; Sun, W.-X.; Ren, D.; Haeri, H. Research on a New Method of Windshield Microwave Heating. Adv. Mater. Sci. Eng. Int. Conf. 2016, 139–144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Gao, L.; Ren, W.; Zhang, R.; Chen, Y.; Zhou, Q.; Sun, K.; Jie, Z.; Jia, Y. Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band. Materials 2022, 15, 8147. https://doi.org/10.3390/ma15228147
Yang Z, Gao L, Ren W, Zhang R, Chen Y, Zhou Q, Sun K, Jie Z, Jia Y. Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band. Materials. 2022; 15(22):8147. https://doi.org/10.3390/ma15228147
Chicago/Turabian StyleYang, Zhaoning, Lu Gao, Wei Ren, Ruiduan Zhang, Yangyang Chen, Qian Zhou, Kai Sun, Ziqi Jie, and Yanmin Jia. 2022. "Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band" Materials 15, no. 22: 8147. https://doi.org/10.3390/ma15228147
APA StyleYang, Z., Gao, L., Ren, W., Zhang, R., Chen, Y., Zhou, Q., Sun, K., Jie, Z., & Jia, Y. (2022). Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band. Materials, 15(22), 8147. https://doi.org/10.3390/ma15228147