Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Li, G.; Wang, Z.; Zhao, X.L. Fatigue behavior of concrete beams reinforced with glass and carbon-fiber reinforced polymer (GFRP/CFRP) bars after exposure to elevated temperatures. Compos. Struct. 2019, 229, 111427. [Google Scholar] [CrossRef]
- Charalambides, M.N.; Hardouin, R.; Kinloch, A.J.; Matthews, F.L. Adhesively-bonded repairs to fibre-composite materials I: Experimental. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1371–1381. [Google Scholar] [CrossRef]
- Kaye, R.H.; Heller, M. Through-thickness shape optimisation of bonded repairs and lap-joints. Int. J. Adhes. Adhes. 2002, 22, 7–21. [Google Scholar] [CrossRef]
- Oztelcan, C.; Ochoab, O.O.; Martin, J.; Sem, K. Design and analysis of test coupons for composite blade repairs. Compos. Struct. 1997, 37, 185–1893. [Google Scholar] [CrossRef]
- Whittingham, B.; Baker, A.A.; Harman, A.; Bitton, D. Micrographic studies on adhesively bonded scarf repairs to thick composite aircraft structure. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1419–1432. [Google Scholar] [CrossRef]
- Cheng, P.; Gong, X.-J.; Hearn, D.; Aivazzadeh, S. Tensile behaviour of patch-repaired CFRP laminates. Compos. Struct. 2011, 93, 582–589. [Google Scholar] [CrossRef]
- Soutis, C.; Duan, D.-M.; Goutas, P. Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches. Compos. Struct. 1999, 45, 289–301. [Google Scholar] [CrossRef]
- Charalambides, M.N.; Kinloch, A.J.; Matthews, F.L. Adhesively-bonded repairs to fibre-composite materials II: Finite element modelling. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1383–1396. [Google Scholar] [CrossRef]
- Campilho, R.D.S.G.; de Moura, M.F.S.F.; Domingues, J.J.M.S. Modelling single and double-lap repairs on composite materials. Compos. Sci. Technol. 2005, 65, 1948–1958. [Google Scholar] [CrossRef]
- Papanikos, P.; Tserpes, K.I.; Labeas, G.; Pantelakis, S. Progressive damage modelling of bonded composite repairs. Theor. Appl. Fract. Mech. 2005, 43, 189–1898. [Google Scholar] [CrossRef]
- Hu, F.Z.; Soutis, C. Strength prediction of patch-repaired CFRP laminates loaded in compression. Compos. Sci. Technol. 2000, 60, 1103–1114. [Google Scholar] [CrossRef]
- Liu, X.; Wang, G. Progressive failure analysis of bonded composite repairs. Compos. Struct. 2007, 81, 331–340. [Google Scholar] [CrossRef]
- Smahdi, S.; Kinloch, A.J.; Matthews, F.L.; Crisfield, M.A. The static mechanical performance of repaired composite sandwich beams: Part I—Experimental characterisation. J. Sandw. Struct. Mater. 2003, 5, 179–202. [Google Scholar] [CrossRef]
- Balcı, O.; Çoban, O.; Bora, M.Ö.; Akagündüz, E.; Yalçin, E.B. Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures. Mater. Sci. Eng. A 2017, 682, 23–30. [Google Scholar] [CrossRef]
- Andrew, J.J.; Arumugam, V.; Saravanakumar, K.; Dhakal, H.N.; Santuli, C. Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Compos. Struct. 2015, 133, 911–920. [Google Scholar] [CrossRef]
- Ivañez, I.; Sánchez-Saez, S.; Garcia-Castillo, S.K.; Barbero, E.; Amaro, A.M.; Reis, P.N.B. Impact response of repaired sandwich structures. Polym. Compos. 2020, 41, 3014–3022. [Google Scholar] [CrossRef]
- Coelho, S.R.M.; Reis, P.N.B.; Ferreira, J.A.M.; Pereira, A.M. Effects of external patch configuration on repaired composite laminates subjected to multi-impacts. Compos. Struct. 2017, 168, 259–265. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, A.; Saahil. Influence of the impact position on scarf repair composite under low velocity impact: FEA investigation. Mater. Today Proc. 2021, 38, 3005–3013. [Google Scholar] [CrossRef]
- Hou, Y.; Tie, Y.; Li, C.; Sapanathan, T.; Rachik, M. Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations. Compos. Part B Eng. 2019, 163, 669–680. [Google Scholar] [CrossRef]
- Hosur, M.V.; Karim, M.R.; Jeelani, S. Experimental investigations on the response of stitched/unstitched woven S2-glass/SC15 epoxy composites under single and repeated low velocity impact loading. Compos. Struct. 2003, 61, 89–102. [Google Scholar] [CrossRef]
- Chalkley, P.; Baker, A. Development of a generic repair joint for certification of bonded composite repairs. Int. J. Adhes. Adhes. 1999, 19, 121–132. [Google Scholar] [CrossRef]
- Baker, A.; Gunnion, A.J.; Wang, J. On the certification of bonded repairs to primary composite aircraft components. J. Adhes. 2015, 91, 4–38. [Google Scholar] [CrossRef]
- Khan, S.H.; Khan, A.A.; Husain, A. Effect of fibre orientation on damage resistance of composite laminates. Int. J. Crashworth. 2021, 26, 270–282. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Magalhaes, A.G.; de Moura, M.F.S.F. The Influence of the boundary conditions on low-velocity impact composite damage. Strain 2011, 47, E220–E226. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Santos, P.; Richardson, M.O.W.; Santos, J.B. Impact response of kevlar composites with filled epoxy matrix. Compos. Struct. 2012, 94, 3520–3528. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Zhang, Z.Y.; Benameur, T.; Richardson, M.O.W. Impact response of kevlar composites with nanoclay enhanced epoxy matrix. Compos. Part B Eng. 2013, 46, 7–14. [Google Scholar] [CrossRef]
- Belingardi, G.; Vadori, R. Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates. Int. J. Impact Eng. 2002, 27, 213–229. [Google Scholar] [CrossRef]
- Aslan, Z.; Karakuzu, R.; Okutan, B. The response of laminated composite plates under low-velocity impact loading. Compos. Struct. 2003, 59, 119–127. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adbullah, M.; Jeelani, S. Studies on the low-velocity impact response of woven hybrid composites. Compos. Struct. 2005, 67, 253–262. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Santos, P.; Ferreira, J.A.M.; Richardson, M.O.W. Impact response of sandwich composites with nano-enhanced epoxy resin. J. Reinf. Plast. Compos. 2013, 32, 898–906. [Google Scholar] [CrossRef]
- Schoeppner, G.A.; Abrate, S. Delamination threshold loads for low velocity impact on composite laminates. Compos. Part A Appl. Sci. Manuf. 2000, 31, 903–915. [Google Scholar] [CrossRef]
- Río, T.G.; Zaer, R.; Barbero, E.; Navarro, C. Damage in CFRPs due to low velocity impact at low temperature. Compos. Part B Eng. 2005, 36, 41–50. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F.; Santos, J.B. Influence of the specimen thickness on low velocity impact behavior of composites. J. Polym. Eng. 2012, 32, 53–58. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A.; Louro, C. Effects of alkaline and acid solutions on glass/epoxy composites. Polym. Degrad. Stab. 2013, 98, 853–862. [Google Scholar] [CrossRef]
- David-West, O.S.; Nash, D.H.; Banks, W.M. An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact. Compos. Struct. 2008, 83, 247–258. [Google Scholar] [CrossRef]
- Whitney, J.M.; Nuismer, R.J. Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations. J. Compos. Mater. 1974, 8, 253–265. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Coelho, C.A.C.P.; Navalho, F.V.P. Impact response of composite sandwich cylindrical shells. Appl. Sci. 2021, 11, 10958. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; Neto, M.A. Experimental study of temperature effects on composite laminates subjected to multi-impacts. Compos. Part B Eng. 2016, 98, 23–29. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Neto, M.A.; Amaro, A.M. Multi-impact behaviour of composite laminates under constant and different energy levels. Compos. Struct. 2022, 294, 115788. [Google Scholar] [CrossRef]
- Amaro, A.M.; Reis, P.N.B.; de Moura, M.F.S.F. Delamination effect on bending behaviour in carbon–epoxy composites. Strain 2011, 47, 203–208. [Google Scholar] [CrossRef]
- Davies, G.A.O.; Hitchings, D.; Zhou, G. Impact damage and residual strengths of woven fabric glass/polyester laminates. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1147–1156. [Google Scholar] [CrossRef]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1123–1131. [Google Scholar] [CrossRef]
- Dalfi, H.; Katnam, K.B.; Potluri, P. Intra-laminar toughening mechanisms to enhance impact damage tolerance of 2D woven composite laminates via yarn-level fiber hybridization and fiber architecture. Polym. Compos. 2019, 40, 4573–4587. [Google Scholar] [CrossRef]
Geometry | Load (kN) | Displacement (mm) | Restored Energy (%) | Impact Bending Stiffness (N/mm) |
---|---|---|---|---|
CS_0 | 3.61 (0.12) | 4.9 (0.39) | 64.7 (1.10) | 721.3 (6.96) |
CS_15 | 2.81 (0.06) | 5.3 (0.08) | 42.5 (1.41) | 522.7 (15.3) |
CS_35 | 4.08 (0.02) | 4.6 (0.17) | 51.1 (1.11) | 844 (17.51) |
R_0 | 2.52 (0.11) | 5.1 (0.27) | 28.5 (2.33) | 440.2 (34.35) |
R_15 | 3.38 (0.15) | 4.1 (0.15) | 49.6 (8.16) | 814 (10.15) |
R_35 | 4.42 (0.14) | 4.2 (0.13) | 52.1 (1.19) | 1015.4 (13.57) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, P.N.B.; Coelho, S.R.M.; Bezazi, A. Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials 2022, 15, 8039. https://doi.org/10.3390/ma15228039
Reis PNB, Coelho SRM, Bezazi A. Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials. 2022; 15(22):8039. https://doi.org/10.3390/ma15228039
Chicago/Turabian StyleReis, Paulo N. B., Sara R. M. Coelho, and Abderrezak Bezazi. 2022. "Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts" Materials 15, no. 22: 8039. https://doi.org/10.3390/ma15228039
APA StyleReis, P. N. B., Coelho, S. R. M., & Bezazi, A. (2022). Effect of Impact Position on Repaired Composite Laminates Subjected to Multi-Impacts. Materials, 15(22), 8039. https://doi.org/10.3390/ma15228039