Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Sample Characterization
3. Results and Discussion
3.1. XPS Analysis
3.2. TEM Analysis
3.3. SEM Analysis
3.4. Discussion of the Ion-Induced Processes
3.5. UV–Vis Spectroscopy and SERS Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed]
- Tatarkin, D.E.; Yakubovsky, D.I.; Ermolaev, G.A.; Stebunov, Y.V.; Voronov, A.A.; Arsenin, A.V.; Volkov, V.S.; Novikov, S.M. Surface-Enhanced Raman Spectroscopy on Hybrid Graphene/Gold Substrates near the Percolation Threshold. Nanomaterials 2020, 10, 164. [Google Scholar] [CrossRef] [PubMed]
- Chongdar, S.; Bhattacharjee, S.; Azad, S.; Bal, R.; Bhaumik, A. Selective N-Formylation of Amines Catalysed by Ag NPs Festooned over Amine Functionalized SBA-15 Utilizing CO2 as C1 Source. Mol. Catal. 2021, 516, 111978. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Chen, Z.; Pors, A.; Wang, Z.; Bozhevolnyi, S.I. Gap-Plasmon Based Broadband Absorbers for Enhanced Hot-Electron and Photocurrent Generation. Sci. Rep. 2016, 6, 30650. [Google Scholar] [CrossRef]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the Diffraction Limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; ISBN 978-0-387-33150-8. [Google Scholar]
- Evlyukhin, A.B.; Kuznetsov, A.I.; Novikov, S.M.; Beermann, J.; Reinhardt, C.; Kiyan, R.; Bozhevolnyi, S.I.; Chichkov, B.N. Optical Properties of Spherical Gold Mesoparticles. Appl. Phys. B 2012, 106, 841–848. [Google Scholar] [CrossRef]
- Beermann, J.; Novikov, S.M.; Albrektsen, O.; Nielsen, M.G.; Bozhevolnyi, S.I. Surface-Enhanced Raman Imaging of Fractal Shaped Periodic Metal Nanostructures. J. Opt. Soc. Am. B 2009, 26, 2370–2376. [Google Scholar] [CrossRef]
- Ringe, E.; McMahon, J.M.; Sohn, K.; Cobley, C.; Xia, Y.; Huang, J.; Schatz, G.C.; Marks, L.D.; Van Duyne, R.P. Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. J. Phys. Chem. C 2010, 114, 12511–12516. [Google Scholar] [CrossRef]
- Wang, X.-M.; Li, X.; Liu, W.-H.; Han, C.-Y.; Wang, X.-L. Gas Sensor Based on Surface Enhanced Raman Scattering. Materials 2021, 14, 388. [Google Scholar] [CrossRef]
- Banerjee, D.; Akkanaboina, M.; Ghosh, S.; Soma, V.R. Picosecond Bessel Beam Fabricated Pure, Gold-Coated Silver Nanostructures for Trace-Level Sensing of Multiple Explosives and Hazardous Molecules. Materials 2022, 15, 4155. [Google Scholar] [CrossRef]
- Vishnupriya, S.; Chaudhari, K.; Jagannathan, R.; Pradeep, T. Single-Cell Investigations of Silver Nanoparticle–Bacteria Interactions. Part. Part. Syst. Charact. 2013, 30, 1056–1062. [Google Scholar] [CrossRef]
- Brazhe, N.A.; Evlyukhin, A.B.; Goodilin, E.A.; Semenova, A.A.; Novikov, S.M.; Bozhevolnyi, S.I.; Chichkov, B.N.; Sarycheva, A.S.; Baizhumanov, A.A.; Nikelshparg, E.I.; et al. Probing Cytochrome c in Living Mitochondria with Surface-Enhanced Raman Spectroscopy. Sci. Rep. 2015, 5, 13793. [Google Scholar] [CrossRef] [PubMed]
- El barghouti, M.; Akjouj, A.; Mir, A. Design of Silver Nanoparticles with Graphene Coatings Layers Used for LSPR Biosensor Applications. Vacuum 2020, 180, 109497. [Google Scholar] [CrossRef]
- Adam, R.Z.; Khan, S.B. Antimicrobial Efficacy of Silver Nanoparticles against Candida Albicans. Materials 2022, 15, 5666. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Balabanyan, V.Y.; Tsiskarashvili, A.V. Antibacterial Properties of Modified A-C and Ta-C Coatings: The Effects of the Sp2/Sp3 Ratio, Oxidation, Nitridation, and Silver Incorporation. Appl. Phys. A 2022, 128, 929. [Google Scholar] [CrossRef]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Che Abdullah, C.A.; Ahmad, S.A. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef] [PubMed]
- Idone, A.; Gulmini, M.; Henry, A.-I.; Casadio, F.; Chang, L.; Appolonia, L.; Duyne, R.P.V.; Shah, N.C. Silver Colloidal Pastes for Dye Analysis of Reference and Historical Textile Fibers Using Direct, Extractionless, Non-Hydrolysis Surface-Enhanced Raman Spectroscopy. Analyst 2013, 138, 5895–5903. [Google Scholar] [CrossRef]
- Novikov, S.M.; Popok, V.N.; Evlyukhin, A.B.; Hanif, M.; Morgen, P.; Fiutowski, J.; Beermann, J.; Rubahn, H.-G.; Bozhevolnyi, S.I. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications. Langmuir 2017, 33, 6062–6070. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Colloidal Silver Nanoplates. State of the Art and Future Challenges. J. Mater. Chem. 2008, 18, 1724–1737. [Google Scholar] [CrossRef]
- Zuo, W.; Pelenovich, V.; Tolstogouzov, A.; Zhang, R.; Zeng, X.; Abudouwufu, T.; Zhang, X.; Fu, D. Direct Ion-Beam Deposition of Ag Nanoparticles Using a Solid-State Silver Ion Source. Vacuum 2021, 183, 109846. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.-Y.; Yamaguchi, K.; Tanemura, M.; Huang, Z.; Jiang, D.; Chen, Y.; Zhou, F.; Nogami, M. Controlled Fabrication of Silver Nanoneedles Array for SERS and Their Application in Rapid Detection of Narcotics. Nanoscale 2012, 4, 2663–2669. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; Marco, L.D.; Giorgi, M.D.; Nicotra, G.; Carbone, L.; Sanvitto, D.; et al. Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. Available online: https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b03963 (accessed on 28 March 2022).
- Singh, U.B.; Agarwal, D.C.; Khan, S.A.; Mohapatra, S.; Tripathi, A.; Avasthi, D.K. A Study on the Formation of Ag Nanoparticles on the Surface and Catcher by Ion Beam Irradiation of Ag Thin Films. J. Phys. D Appl. Phys. 2012, 45, 445304. [Google Scholar] [CrossRef]
- Hartmann, H.; Popok, V.N.; Barke, I.; von Oeynhausen, V.; Meiwes-Broer, K.-H. Design and Capabilities of an Experimental Setup Based on Magnetron Sputtering for Formation and Deposition of Size-Selected Metal Clusters on Ultra-Clean Surfaces. Rev. Sci. Instrum. 2012, 83, 073304. [Google Scholar] [CrossRef] [PubMed]
- Le Bris, A.; Maloum, F.; Teisseire, J.; Sorin, F. Self-Organized Ordered Silver Nanoparticle Arrays Obtained by Solid State Dewetting. Appl. Phys. Lett. 2014, 105, 203102. [Google Scholar] [CrossRef]
- Singh, U.B.; Agarwal, D.C.; Khan, S.A.; Kumar, M.; Tripathi, A.; Singhal, R.; Panigrahi, B.K.; Avasthi, D.K. Engineering of Hydrophilic and Plasmonic Properties of Ag Thin Film by Atom Beam Irradiation. Appl. Surf. Sci. 2011, 258, 1464–1469. [Google Scholar] [CrossRef]
- Simonot, L.; Chabanais, F.; Rousselet, S.; Pailloux, F.; Camelio, S.; Babonneau, D. Evolution of Plasmonic Nanostructures under Ultra-Low-Energy Ion Bombardment. Appl. Surf. Sci. 2021, 544, 148672. [Google Scholar] [CrossRef]
- Kamaliya, B.; Mote, R.G.; Aslam, M.; Fu, J. Improved Enhancement Factor for SERS Using Broad Ion Beam Induced Self-Organized Gold Nanocones. MRS Adv. 2019, 4, 697–703. [Google Scholar] [CrossRef]
- Prakash, J.; Wijesundera, D.N.; Rajapaksa, I.; Chu, W.-K. Ion Beam Nanoengineering of Surfaces for Molecular Detection Using Surface Enhanced Raman Scattering. Mol. Syst. Des. Eng. 2022, 7, 411–421. [Google Scholar] [CrossRef]
- Samodelova, M.V.; Kapitanova, O.O.; Meshcheryakova, N.F.; Novikov, S.M.; Yarenkov, N.R.; Streletskii, O.A.; Yakubovsky, D.I.; Grabovenko, F.I.; Zhdanov, G.A.; Arsenin, A.V.; et al. Model of the SARS-CoV-2 Virus for Development of a DNA-Modified, Surface-Enhanced Raman Spectroscopy Sensor with a Novel Hybrid Plasmonic Platform in Sandwich Mode. Biosensors 2022, 12, 768. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Li, Y.; Wang, B.; Yang, S.; Chen, W.; Wu, X.; Guo, J.; Ma, X. SERS Substrate Fabrication for Biochemical Sensing: Towards Point-of-Care Diagnostics. J. Mater. Chem. B 2021, 9, 8378–8388. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Ebrahim Attia, A.B.; Dinish, U.S.; Olivo, M. Towards a Point-of-Care SERS Sensor for Biomedical and Agri-Food Analysis Applications: A Review of Recent Advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Antad, V.; Simonot, L.; Babonneau, D. Influence of Low-Energy Plasma Annealing on Structural and Optical Properties of Silver Nanoclusters Grown by Magnetron Sputtering Deposition. J. Nanopart. Res. 2014, 16, 2328. [Google Scholar] [CrossRef]
- Antad, V.; Simonot, L.; Babonneau, D. Tuning the Surface Plasmon Resonance of Silver Nanoclusters by Oxygen Exposure and Low-Energy Plasma Annealing. Nanotechnology 2013, 24, 045606. [Google Scholar] [CrossRef] [PubMed]
- Zavidovskiy, I.A.; Streletskiy, O.A.; Nishchak, O.Y.; Haidarov, A.A.; Pavlikov, A.V. The Influence of Ion Assistance Energy on Structural and Optical Properties of Carbon-Silver Nanocomposites. Thin Solid Films 2021, 738, 138966. [Google Scholar] [CrossRef]
- Niu, C.; Han, J.; Hu, S.; Song, X.; Long, W.; Liu, D.; Wang, G. Surface Modification and Structure Evolution of Aluminum under Argon Ion Bombardment. Appl. Surf. Sci. 2021, 536, 147819. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nischak, O.Y.; Haidarov, A.A. Size Control of Silver Nanoclusters during Ion-Assisted Pulse-Plasma Deposition of Carbon-Silver Composite Thin Films. Vacuum 2020, 175, 109286. [Google Scholar] [CrossRef]
- He, L.B.; Wang, Y.L.; Xie, X.; Han, M.; Song, F.Q.; Wang, B.J.; Chen, W.L.; Xu, H.X.; Sun, L.T. Systematic Investigation of the SERS Efficiency and SERS Hotspots in Gas-Phase Deposited Ag Nanoparticle Assemblies. Phys. Chem. Chem. Phys. 2017, 19, 5091–5101. [Google Scholar] [CrossRef]
- Zavidovskii, I.A.; Nishchak, O.Y.; Savchenko, N.F.; Streletskii, O.A. Effect of Low-Energy Ion Assistance on the Structure and Optical Absorption of a-CH:Ag Composite Coatings. J. Exp. Theor. Phys. 2022, 134, 682–692. [Google Scholar] [CrossRef]
- Klimmer, A.; Ziemann, P.; Biskupek, J.; Kaiser, U.; Flesch, M. Size-Dependent Effect of Ion Bombardment on Au Nanoparticles on Top of Various Substrates: Thermodynamically Dominated Capillary Forces versus Sputtering. Phys. Rev. B 2009, 79, 155427. [Google Scholar] [CrossRef]
- Murty, M.V.R. Sputtering: The Material Erosion Tool. Surf. Sci. 2002, 500, 523–544. [Google Scholar] [CrossRef]
- Resta, V.; Peláez, R.J.; Afonso, C.N. Importance of Ion Bombardment during Coverage of Au Nanoparticles on Their Structural Features and Optical Response. J. Appl. Phys. 2014, 115, 124303. [Google Scholar] [CrossRef]
- Satpati, B.; Satyam, P.V.; Som, T.; Dev, B.N. Ion-Beam-Induced Embedded Nanostructures and Nanoscale Mixing. J. Appl. Phys. 2004, 96, 5212–5216. [Google Scholar] [CrossRef]
- Fu, C.; Zeng, X.; Sun, R.; Xu, J.-B.; Wong, C.-P. Facile Preparation of Silver Nanoparticles Decorated Boron Nitride Nanotube Hybrids. In Proceedings of the 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018; pp. 496–500. [Google Scholar]
- Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C.M.; Du, H.; Sukhishvili, S. Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation. Anal. Chem. 2011, 83, 5873–5880. [Google Scholar] [CrossRef] [PubMed]
- Boronin, A.I.; Koscheev, S.V.; Zhidomirov, G.M. XPS and UPS Study of Oxygen States on Silver. J. Electron Spectrosc. Relat. Phenom. 1998, 96, 43–51. [Google Scholar] [CrossRef]
- Tabakman, S.M.; Chen, Z.; Casalongue, H.S.; Wang, H.; Dai, H. A New Approach to Solution-Phase Gold Seeding for SERS Substrates. Small 2011, 7, 499–505. [Google Scholar] [CrossRef]
- Babich, E.; Scherbak, S.; Asonkeng, F.; Maurer, T.; Lipovskii, A. Hot Spot Statistics and SERS Performance of Self-Assembled Silver Nanoisland Films. Opt. Mater. Express OME 2019, 9, 4090–4096. [Google Scholar] [CrossRef]
- Shanthil, M.; Thomas, R.; Swathi, R.S.; George Thomas, K. Ag@SiO2 Core–Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. J. Phys. Chem. Lett. 2012, 3, 1459–1464. [Google Scholar] [CrossRef]
- Marinov, M. Effect of Ion Bombardment on the Initial Stages of Thin Film Growth. Thin Solid Films 1977, 46, 267–274. [Google Scholar] [CrossRef]
- Asanithi, P.; Chaiyakun, S.; Limsuwan, P. Growth of Silver Nanoparticles by DC Magnetron Sputtering. J. Nanomater. 2012, 2012, 79. [Google Scholar] [CrossRef]
- CEGEO; Saint-Cyr, B.; Szarf, K.; Voivret, C.; Azéma, E.; Richefeu, V.; Delenne, J.-Y.; Combe, G.; Nouguier-Lehon, C.; Villard, P.; et al. Particle Shape Dependence in 2D Granular Media. EPL 2012, 98, 44008. [Google Scholar] [CrossRef]
- Dobrev, D. Ion-Beam-Induced Texture Formation in Vacuum-Condensed Thin Metal Films. Thin Solid Films 1982, 92, 41–53. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nischak, O.Y.; Dvoryak, S.V. Electrical Conductivity and Structural Properties of a-C:N Films Deposited by Ion-Assisted Pulse-Arc Sputtering. Thin Solid Films 2020, 701, 137948. [Google Scholar] [CrossRef]
- Aumayr, F.; Varga, P.; Winter, H.P. Potential Sputtering: Desorption from Insulator Surfaces by Impact of Slow Multicharged Ions. Int. J. Mass Spectrom. 1999, 192, 415–424. [Google Scholar] [CrossRef]
- Sygusch, J.; Rudolph, M. A Contribution to Wettability and Wetting Characterisation of Ultrafine Particles with Varying Shape and Degree of Hydrophobization. Appl. Surf. Sci. 2021, 566, 150725. [Google Scholar] [CrossRef]
- Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth Heinemann; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 978-0-7506-4682-6. [Google Scholar]
- Vasiliev, I.; Medasani, B. Surface Properties of Silver and Aluminum Nanoclusters. In Proceedings of the SPIE Proceedings, San Jose, CA, USA, 7 February 2008; Volume 6902, p. 690207. [Google Scholar] [CrossRef]
- Janczuk, B.; Zdziennicka, A. A Study on the Components of Surface Free Energy of Quartz from Contact Angle Measurements. J. Mater. Sci. 1994, 29, 3559–3564. [Google Scholar] [CrossRef]
- González-Martín, M.L.; Jańczuk, B.; Labajos-Broncano, L.; Bruque, J.M.; González-García, C.M. Analysis of the Silica Surface Free Energy by the Imbibition Technique. J. Colloid Interface Sci. 2001, 240, 467–472. [Google Scholar] [CrossRef]
- Zhao, G.; Shen, W.; Jeong, E.; Lee, S.-G.; Yu, S.M.; Bae, T.-S.; Lee, G.-H.; Han, S.Z.; Tang, J.; Choi, E.-A.; et al. Ultrathin Silver Film Electrodes with Ultralow Optical and Electrical Losses for Flexible Organic Photovoltaics. ACS Appl. Mater. Interfaces 2018, 10, 27510–27520. [Google Scholar] [CrossRef]
- Luo, J.; Zeng, M.; Peng, B.; Tang, Y.; Zhang, L.; Wang, P.; He, L.; Huang, D.; Wang, L.; Wang, X.; et al. Electrostatic-Driven Dynamic Jamming of 2D Nanoparticles at Interfaces for Controlled Molecular Diffusion. Angew. Chem. 2018, 130, 11926–11931. [Google Scholar] [CrossRef]
- Bohlmark, J.; Östbye, M.; Lattemann, M.; Ljungcrantz, H.; Rosell, T.; Helmersson, U. Guiding the Deposition Flux in an Ionized Magnetron Discharge. Thin Solid Films 2006, 515, 1928–1931. [Google Scholar] [CrossRef]
- Hervieu, Y.Y. Effective Diffusion Length and Elementary Surface Processes in the Concurrent Growth of Nanowires and 2D Layers. J. Cryst. Growth 2018, 493, 1–7. [Google Scholar] [CrossRef]
- Lee, S.C.; Brueck, S.R.J. Nanoscale Patterned Growth Assisted by Surface Out-Diffusion of Adatoms from Amorphous Mask Films in Molecular Beam Epitaxy. Cryst. Growth Des. 2016, 16, 3669–3676. [Google Scholar] [CrossRef]
- Lin, N.; Payer, D.; Dmitriev, A.; Strunskus, T.; Wöll, C.; Barth, J.V.; Kern, K. Two-Dimensional Adatom Gas Bestowing Dynamic Heterogeneity on Surfaces. Angew. Chem. 2005, 117, 1512–1515. [Google Scholar] [CrossRef]
- Spirina, A.A.; Nastovjak, A.G.; Shwartz, N.L. Influence of AIIIBv ion-induced on Congruent Temperature under Langmuir Evaporation Conditions. In Proceedings of the 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol (Altai Republic), Russia, 29 June–3 July 2017; pp. 22–26. [Google Scholar]
- Takagi, T. Ion–Surface Interactions during Thin Film Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 1998, 2, 382. [Google Scholar] [CrossRef]
- Seebauer, E.G.; Allen, C.E. Estimating Surface Diffusion Coefficients. Prog. Surf. Sci. 1995, 49, 265–330. [Google Scholar] [CrossRef]
- Flötotto, D.; Wang, Z.M.; Jeurgens, L.P.H.; Bischoff, E.; Mittemeijer, E.J. Effect of Adatom Surface Diffusivity on Microstructure and Intrinsic Stress Evolutions during Ag Film Growth. J. Appl. Phys. 2012, 112, 043503. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Starowicz, Z.; Wojnarowska-Nowak, R.; Ozga, P.; Sheregii, E.M. The Tuning of the Plasmon Resonance of the Metal Nanoparticles in Terms of the SERS Effect. Colloid Polym. Sci. 2018, 296, 1029–1037. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Frontiera, R.R.; Henry, A.-I.; Dieringer, J.A.; Duyne, R.P.V. Creating, Characterizing, and Controlling Chemistry with SERS Hot Spots. Phys. Chem. Chem. Phys. 2012, 15, 21–36. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streletskiy, O.; Zavidovskiy, I.; Yakubovsky, D.; Doroshina, N.; Syuy, A.; Lebedinskij, Y.; Markeev, A.; Arsenin, A.; Volkov, V.; Novikov, S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials 2022, 15, 7721. https://doi.org/10.3390/ma15217721
Streletskiy O, Zavidovskiy I, Yakubovsky D, Doroshina N, Syuy A, Lebedinskij Y, Markeev A, Arsenin A, Volkov V, Novikov S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials. 2022; 15(21):7721. https://doi.org/10.3390/ma15217721
Chicago/Turabian StyleStreletskiy, Oleg, Ilya Zavidovskiy, Dmitry Yakubovsky, Natalia Doroshina, Alexander Syuy, Yury Lebedinskij, Andrey Markeev, Aleksey Arsenin, Valentyn Volkov, and Sergey Novikov. 2022. "Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation" Materials 15, no. 21: 7721. https://doi.org/10.3390/ma15217721
APA StyleStreletskiy, O., Zavidovskiy, I., Yakubovsky, D., Doroshina, N., Syuy, A., Lebedinskij, Y., Markeev, A., Arsenin, A., Volkov, V., & Novikov, S. (2022). Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials, 15(21), 7721. https://doi.org/10.3390/ma15217721