Correlation Analysis of Linear Viscoelastic (LVE) Properties, Damage Resistance and Microstructure of Unmodified Asphalt Binders with the Same Penetration Grade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rheology Investigation
2.2.1. Frequency Sweep Test
2.2.2. Multiple Stress Creep Recovery Test
2.2.3. Linear Amplitude Sweep Test
2.3. Microstructure Investigation
2.3.1. Sample Preparation
2.3.2. Topography and Morphology Test
3. Results and Discussions
3.1. Linear Viscoelastic Characteristics
3.1.1. Dynamic Shear Modulus Mastercurves
3.1.2. Linear Viscoelastic Properties
3.2. Damage Resistance Characteristics
3.2.1. MSCR Test Results
3.2.2. LAS Test Results
3.3. Microstructure Characteristics
3.3.1. Topography and Morphology Test Results
3.3.2. Microstructure Morphology Versus Rheological Performance
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Liu, G.; Yao, B.; Qian, Z. Rutting Prediction Model for Semirigid Base Asphalt Pavement Based on Hamburg Wheel Tracking Test. Int. J. Geomech. 2021, 21, 04021215. [Google Scholar] [CrossRef]
- Hajj, R.; Bhasin, A. The search for a measure of fatigue cracking in asphalt binders–A review of different approaches. Int. J. Pavement Eng. 2018, 19, 205–219. [Google Scholar] [CrossRef]
- Rys, D.; Jaczewski, M.; Pszczola, M.; Kamedulska, A.; Kamedulska, B. Factors affecting low-temperature cracking of asphalt pavements: Analysis of field observations using the ordered logistic model. Int. J. Pavement Eng. 2022, 1–11. [Google Scholar] [CrossRef]
- Gibson, N. Performance Testing for Superpave and Structural Validation; Report No. FHWA-HRT-11-045; Federal Highway Administration: Washington, DC, USA, 2012.
- Yildirim, Y. Polymer modified asphalt binders. Constr. Build. Mater. 2007, 21, 66–72. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Zhang, K.; Li, Z. Rheological property evaluation and microreaction mechanism of rubber asphalt, desulfurized rubber asphalt, and their composites. J. Mater. Civ. Eng. 2021, 33, 04021100. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; Huang, G.; Zhou, C.; Feng, M.; Li, Y. Preparation and Characteristics of Ethylene Bis(Stearamide)-Based Graphene-Modified Asphalt. Materials 2019, 12, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saboo, N.; Singh, B.; Kumar, P. Development of high-temperature ranking parameter for asphalt binders using Arrhenius model. J. Mater. Civ. Eng. 2019, 31, 04019297. [Google Scholar] [CrossRef]
- D’Angelo, J.; Reinke, G.; Bahia, H.; Wen, H.; Johnson, C.M.; Marasteanu, M. Development in asphalt binder specifications. In Proceedings of the Workshop on Transportation Research Circular, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- AASHTO T 350; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2014.
- D’Angelo, J.; Dongré, R. Practical use of multiple stress creep and recovery test. Transp. Res. Record. 2009, 2126, 73–82. [Google Scholar] [CrossRef]
- D’Angelo, J. The relationship of the MSCR test to rutting. Road Mater. Pavement Design. 2009, 10, 61–80. [Google Scholar] [CrossRef]
- AASHTO TP 101; Standard method of test for estimating damage tolerance of asphalt binders using the linear amplitude sweep. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2014.
- Johnson, C.M. Estimating Asphalt Binder Fatigue Resistance Using an Accelerated Test Method. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2010. [Google Scholar]
- Hintz, C.; Velasquez, R.; Johnson, C.; Bahia, H. Modification and validation of linear amplitude sweep test for binder fatigue specification. Transp. Res. Record. 2011, 2207, 99–106. [Google Scholar] [CrossRef]
- Hintz, C.; Bahia, H. Simplification of linear amplitude sweep test and specification parameter. Transp. Res. Record. 2013, 2370, 10–16. [Google Scholar] [CrossRef]
- Saboo, N.; Diab, A. Integration of Miner’s approach in linear amplitude sweep test data to determine the fatigue life of asphalt binders. Mech. Time-Depend. Mater. 2021, 1–13. [Google Scholar] [CrossRef]
- Motamedi, M.; Shafabakhsh, G.; Azadi, M. Evaluating fatigue-damage of asphalt binder and mastic modified with nano-silica and synthesized polyurethane using VECD method. J. Mater. Civ. Eng. 2020, 32, 04020218. [Google Scholar] [CrossRef]
- Daniel, J.S.; Kim, Y.R. Development of a simplified fatigue test and analysis procedure using a viscoelastic damage model. J. Assoc. Asphalt Paving Technol. 2002, 71, 619–650. [Google Scholar]
- Zhang, J.; Sabouri, M.; Guddati, M.N.; Kim, Y.R. Development of a failure criterion for asphalt mixtures under fatigue loading. J. Assoc. Asphalt Paving Technol. 2013, 82, 1–22. [Google Scholar] [CrossRef]
- Wang, C.; Castorena, C.; Zhang, J.; Kim, Y.R. Unified failure criterion for asphalt binder under cyclic fatigue loading. Road Mater. Pavement Design. 2015, 16, 125–148. [Google Scholar] [CrossRef]
- Safaei, F.; Castorena, C.; Kim, Y.R. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling. Mech. Time-Depend. Mater. 2016, 20, 299–323. [Google Scholar] [CrossRef]
- Wang, C.; Xie, W.; Chen, Y.; Diab, A.; You, Z. Refining the calculation method for fatigue failure criterion of asphalt binder using the linear amplitude sweep test. J. Mater. Civ. Eng. 2018, 30, 04017286. [Google Scholar] [CrossRef]
- Xing, C.; Liu, L.; Wang, M. A new preparation method and imaging parameters of asphalt binder samples for atomic force microscopy. Constr. Build. Mater. 2019, 205, 622–632. [Google Scholar] [CrossRef]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- Masson, J.; Leblond, V.; Margeson, J. Bitumen morphologies by phase-detection atomic force microscopy. J. Microsc. 2006, 221, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.M.; Fini, E.H. AFM study of asphalt binder “bee” structures: Origin, mechanical fracture, topological evolution, and experimental artifacts. RSC Adv. 2015, 5, 96972–96982. [Google Scholar] [CrossRef]
- Magonov, S.; Alexander, J.; Surtchev, M.; Hung, A.M.; Fini, E.H. Compositional mapping of bitumen using local electrostatic force interactions in atomic force microscopy. J. Microsc. 2017, 265, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Pauli, A.T.; Grimes, R.W.; Beemer, A.G.; Turner, T.F.; Branthaver, J.F. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int. J. Pavement Eng. 2011, 12, 291–309. [Google Scholar] [CrossRef]
- Yu, X.; Burnham, N.A.; Tao, M. Surface microstructure of bitumen characterized by atomic force microscopy. Adv. Colloid Interface Sci. 2015, 218, 17–33. [Google Scholar] [CrossRef]
- Dokandari, P.A.; Topal, A.; Ozdemir, D.K. Rheological and microstructural investigation of the effects of rejuvenators on reclaimed asphalt pavement bitumen by DSR and AFM. Int. J. Civ. Eng. 2021, 19, 749–758. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, Y.; Wei, W. Low-temperature characteristics and microstructure of asphalt under complex aging conditions. Constr. Build. Mater. 2021, 303, 124408. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wu, Y.; Wang, H.; Wang, Q.; Zhu, X.; Liu, X.; Sun, H.; Fan, L. Effect of Graphene on Modified Asphalt Microstructures Based on Atomic Force Microscopy. Materials 2021, 14, 3677. [Google Scholar] [CrossRef]
- Nahar, S.N.; Schmets, A.J.M.; Scarpas, A.; Schitter, G. Temperature and thermal history dependence of the microstructure in bituminous materials. Eur. Polym. J. 2013, 49, 1964–1974. [Google Scholar] [CrossRef]
- Ābele, A.; Merijs-Meri, R.; Bērziņa, R.; Zicāns, J.; Haritonovs, V.; Ivanova, T. Effect of bio-oil on rheological and calorimetric properties of RTFOT aged bituminous compositions. Int. J. Pavement Res. Technol. 2021, 14, 537–542. [Google Scholar] [CrossRef]
- Christensen, D.W.; Anderson, D.A.; Rowe, G.M. Relaxation spectra of asphalt binders and the Christensen-Anderson rheological model. Road Mater. Pavement Design. 2017, 18, 382–403. [Google Scholar] [CrossRef]
- Rowe, G.M. Linear visco-elastic binder properties and asphalt pavement cracking. In Proceedings of the Conference on Asphalt Pavements for Southern Africa, Sun City, South Africa, 16–19 August 2015. [Google Scholar]
- Anderson, R.M.; King, G.N.; Hanson, D.I.; Blankenship, P.B. Evaluation of the between asphalt binder properties and non-load related cracking. J. Assoc. Asphalt Paving Technol. 2011, 80, 615–649. [Google Scholar]
- Li, X.; Wang, Y.M.; Wu, Y.L.; Wang, H.R.; Chen, M.; Sun, H.D.; Fan, L. Properties and modification mechanism of asphalt with graphene as modifier. Constr. Build. Mater. 2021, 272, 121919. [Google Scholar] [CrossRef]
Technical Indexes | Binder Types | ||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
Penetration at 25 °C (0.1 mm) | 66 | 67 | 68 | 67 | 71 | 67 | 81 |
Softening point (°C) | 50.0 | 47.8 | 48.1 | 47.9 | 48.6 | 48.5 | 45.8 |
Ductility at 15 °C (cm) | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
Asphalt | Bee Structure | Roughness (nm) | Phase Content (%) | |||||
---|---|---|---|---|---|---|---|---|
Average Area (μm2) | Numbers | Rmax | Rq | ISAD (%) | Catana Phase | Peri Phase | Para Phase | |
A | 0.411 | 35 | 37.97 | 3.47 | 0.057 | 3.60 | 43.00 | 53.40 |
C | 0.353 | 49 | 27.87 | 2.11 | 0.019 | 3.28 | 37.62 | 59.10 |
D | 0.368 | 45 | 31.81 | 2.86 | 0.033 | 4.14 | 50.67 | 45.18 |
E | 0.254 | 38 | 37.57 | 1.82 | 0.023 | 2.41 | 41.64 | 55.95 |
F | 0.367 | 47 | 28.86 | 2.30 | 0.017 | 4.32 | 50.54 | 45.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Song, L.; Wang, Z.; Chen, Y.; Zhou, B. Correlation Analysis of Linear Viscoelastic (LVE) Properties, Damage Resistance and Microstructure of Unmodified Asphalt Binders with the Same Penetration Grade. Materials 2022, 15, 7709. https://doi.org/10.3390/ma15217709
Wang C, Song L, Wang Z, Chen Y, Zhou B. Correlation Analysis of Linear Viscoelastic (LVE) Properties, Damage Resistance and Microstructure of Unmodified Asphalt Binders with the Same Penetration Grade. Materials. 2022; 15(21):7709. https://doi.org/10.3390/ma15217709
Chicago/Turabian StyleWang, Chao, Lihao Song, Zhen Wang, Yifang Chen, and Bochao Zhou. 2022. "Correlation Analysis of Linear Viscoelastic (LVE) Properties, Damage Resistance and Microstructure of Unmodified Asphalt Binders with the Same Penetration Grade" Materials 15, no. 21: 7709. https://doi.org/10.3390/ma15217709
APA StyleWang, C., Song, L., Wang, Z., Chen, Y., & Zhou, B. (2022). Correlation Analysis of Linear Viscoelastic (LVE) Properties, Damage Resistance and Microstructure of Unmodified Asphalt Binders with the Same Penetration Grade. Materials, 15(21), 7709. https://doi.org/10.3390/ma15217709