Development and Characterization of Phosphate Glass Fibers and Their Application in the Reinforcement of Polyester Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Phosphate Glass Fibers
2.2. Preparation and Characterization of Polyester Composites Materials
2.2.1. Preparation of Polyester Resin
2.2.2. Elaboration of Composites Materials
2.2.3. Characterization of Composites Materials
3. Results and Discussion
3.1. Characterization of Phosphate Glass Fibers
3.1.1. Infrared Spectroscopy Analysis
3.1.2. Chemical Durability
3.1.3. Fibre Surface Morphology
3.1.4. Single Filament Tensile Test
3.2. Characterization of Phosphate Glass Fiber-Reinforced Polyester Composites
3.2.1. Physical Characteristics of Composites
3.2.2. Morphological Properties of Composites
3.2.3. Mechanical Properties of Composite
Tensile Testing
Flexural Testing
Mechanical Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, M.C.S.; Fiúza, A.; Ferreira, A.; Dinis, M.D.L.; Meira Castro, A.C.; Meixedo, J.P.; Alvim, M.R. Recycling approach towards sustainability advance the composite materials industry. Recycling 2016, 1, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of reinforced glass fibers waste: Current status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Evaluating the potential use of recycled glass fibers for the development of gypsum-based composites. Constr. Build. Mater. 2022, 321, 126320. [Google Scholar] [CrossRef]
- Henning, F.; Karger, L.; Dorr, D.; Schirmaier, F.J.; Seuffert, J.; Bernath, A. Fast processing and continuous simulation of automotive structural composite components. Compos. Sci. Technol. 2019, 171, 261–279. [Google Scholar] [CrossRef]
- Hofmann, M.; Shahid, A.T.; Machado, M.; Garrido, M.; Bordado, J.C.; Correia, J.R. GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107098. [Google Scholar] [CrossRef]
- Ricciardi, M.R.; Antonucci, V.; Giordano, M.; Zarrelli, M. Thermal decomposition and fire behavior of glass fiber–reinforced polyester resin composites containing phosphate-based fire-retardant additives. J. Fire Sci. 2012, 30, 318–330. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, J.; Liu, J.; Parsons, A.; Ahmed, I.; Rudd, C.; Sharmin, N. Processing and characterization of phosphate glass fiber/polylactic acid commingled yarn composites for commercial production. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 990–1004. [Google Scholar] [CrossRef]
- Cousin, P.; Hassan, M.; Vijay, P.; Robert, M.; Benmokrane, B. Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars. J. Compos. Mater. 2019, 53, 3651–3670. [Google Scholar] [CrossRef]
- Nadiri, A.; Dhiba, D.; Bentayeb, A.; Bih, L.; Maghnouj, J. New Formulations of Glass Based on Moroccan Natural Phosphate. Phosphorus Res. Bull. 2004, 15, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Babu, M.M.; Prasad, P.S.; Rao, P.V.; Govindan, N.P.; Singh, R.K.; Kim, H.W.; Veeraiah, N. Titanium incorporated Zinc-Phosphate bioactive glasses for bone tissue repair and regeneration: Impact of Ti4+ on physicomechanical and in vitro bioactivity. Ceram. Int. 2019, 45, 23715–23727. [Google Scholar] [CrossRef]
- Goj, P.; Stoch, P. Molecular dynamics simulations of P2O5-Fe2O3-FeO-Na2O glasses. J. Non-Cryst. Solids 2018, 500, 70–77. [Google Scholar] [CrossRef]
- Hawkes, P.W.; Spence, J.C.H. (Eds.) Springer Handbook of Microscopy; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Goj, P.; Stoch, P. Molecular dynamics simulations of P2O5-Fe2O3-FeO glass system. Mater. Ceram. Ceram. Mater. 2018, 70, 102–115. [Google Scholar]
- ElBatal, H.; Khalil, E.; Hamdy, Y. In vitro behavior of bioactive phosphate glass–ceramics from the system P2O5–Na2O–CaO containing titania. Ceram. Int. 2009, 35, 1195–1204. [Google Scholar] [CrossRef]
- Lucacel, R.C.; Maier, M.; Simon, V. Structural and in vitro characterization of TiO2-CaO-P2O5 bioglasses. J. Non-Cryst. Solids 2010, 356, 2869–2874. [Google Scholar] [CrossRef]
- Mohini, G.J.; Baskaran, G.S.; Kumar, V.R.; Piasecki, M.; Veeraiah, N. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses. Mater. Sci. Eng. C 2015, 57, 240–248. [Google Scholar] [CrossRef]
- Navarro, M.; Ginebra, M.P.; Clément, J.; Salvador, M.; Gloria, A.; Planell, J.A. Physicochemical degradation of titania-stabilized soluble phosphate glasses for medical applications. J. Am. Ceram. Soc. 2003, 86, 1345–1352. [Google Scholar] [CrossRef]
- Bergo, P.; Reis, S.; Pontuschka, W.; Prison, J.; Motta, C. Dielectric properties and structural features of barium-iron phosphate glasses. J. Non-Cryst. Solids 2004, 336, 159–164. [Google Scholar] [CrossRef]
- Magdas, D.; Cozar, O.; Chis, V.; Ardelean, I.; Vedeanu, N. The structural dual role of Fe2O3 in some lead-phosphate glasses. Vib. Spectrosc. 2008, 48, 251–254. [Google Scholar] [CrossRef]
- Lu, M.; Wang, F.; Liao, Q.; Chen, K.; Qin, J.; Pan, S. FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses. J. Mol. Struct. 2015, 1081, 187–192. [Google Scholar] [CrossRef]
- Tan, C.; Ahmed, I.; Parsons, A.J.; Zhu, C.; Betanzos, F.B.; Rudd, C.D.; Liu, X. Effects of Fe2O3 addition and annealing on the mechanical and dissolution properties of MgO-and CaO-containing phosphate glass fibers for bio-applications. Biomed. Glas. 2018, 4, 57–71. [Google Scholar] [CrossRef]
- Mooghari, H.A.; Nemati, A.; Yekta, B.E.; Hamnabard, Z. The effects of SiO2 and K2O on glass forming ability and structure of CaOTiO2P2O5 glass system. Ceram. Int. 2012, 38, 3281–3290. [Google Scholar] [CrossRef]
- Shi, M.; Liang, Y.; Chai, L.; Min, X.; Zhao, Z.; Yang, S. Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. J. Mol. Struct. 2015, 1081, 389–394. [Google Scholar] [CrossRef]
- Tan, C.; Ahmed, I.; Parsons, A.J.; Sharmin, N.; Zhu, C.; Liu, J.; Liu, X. Structural thermal and dissolution properties of MgO-and CaO-containing borophosphate glasses: Effect of Fe2O3 addition. J. Mater. Sci. 2017, 52, 7489–7502. [Google Scholar] [CrossRef]
- Valappil, S.P.; Ready, D.; Neel, E.A.A.; Pickup, D.M.; Chrzanowski, W.; O’Dell, L.A.; Knowles, J.C. Antimicrobial gallium-doped phosphate-based glasses. Adv. Funct. Mater. 2008, 18, 732–741. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmed, I.; Parsons, A.; Walker, G.; Scotchford, C. Material characterization and cytocompatibility assessment of quinternary phosphate glasses. J. Mater. Sci. Mater. Med. 2012, 23, 2531–2541. [Google Scholar] [CrossRef]
- Franks, K.; Salih, V.; Knowles, J.; Olsen, I. The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate-based glass system. J. Mater. Sci. Mater. Med. 2002, 13, 549–556. [Google Scholar] [CrossRef]
- Es-Soufi, H.; Bih, L. Effect of TiO2 on the chemical durability and optical properties of Mo-based phosphate glasses. J. Non-Cryst. Solids 2021, 558, 120655. [Google Scholar] [CrossRef]
- Sharmin, N.; Parsons, A.J.; Rudd, C.D.; Ahmed, I. Effect of boron oxide addition on fiber drawing, mechanical properties and dissolution behavior of phosphate-based glass fibers with fixed 40, 45 and 50 mol% P2O5. J. Biomater. Appl. 2014, 29, 639–653. [Google Scholar] [CrossRef] [Green Version]
- Neel, E.A.A.; Chrzanowski, W.; Knowles, J.C. Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater. 2008, 4, 523–534. [Google Scholar] [CrossRef]
- Ray, C.; Fang, X.; Karabulut, M.; Marasinghe, G.; Day, D. Effect of melting temperature and time on iron valence and crystallization of iron phosphate glasses. J. Non-Cryst. Solids 1999, 249, 1–16. [Google Scholar] [CrossRef]
- Marasinghe, G.K.; Karabulut, M.; Ray, C.S.; Day, D.E.; Shumsky, M.G.; Yelon, W.B.; Shuh, D.K. Structural features of iron phosphate glasses. J. Non-Cryst. Solids 1997, 222, 144–152. [Google Scholar] [CrossRef]
- Ma, L.N. Dissolution Behavior of Phosphate Glasses. Ph.D. Thesis, Missouri University of Science and Technology, Rolla, MO, USA, 2014. [Google Scholar]
- Saloumi, N.; El Bouchti, M.; Tamraoui, Y.; Manoun, B.; Hannache, H.; Cherkaoui, O. Structural, chemical and mechanical properties of phosphate glass fibers. J. Non-Cryst. Solids 2019, 522, 119587. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibers: Can they replace glass in fiber reinforced plastics. Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Sanjay, M.A.; Yogesha, B. Studies on mechanical properties of jute/E-glass fiber reinforced epoxy hybrid composites. J. Miner. Mater. Charact. Eng. 2016, 4, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Pardo, S.; Baptiste, D.; Décobert, F.; Fitoussi, J.; Joannic, R. Tensile dynamic behavior of a quasi-unidirectonal E-glass/polyester composite. Compos. Sci. Technol. 2002, 62, 579–584. [Google Scholar] [CrossRef]
- Erden, S.; Sever, K.; Seki, Y.; Sarikanat, M. Enhancement of the mechanical properties of glass/polyester composites via matrix modification glass/polyester composite siloxane matrix modification. Fibers Polym. 2010, 11, 732–737. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Khanna, S. Tensile properties of glass fiber-reinforced polyester composites at extremely cold temperatures. Polym. Compos. 2020, 41, 3698–3706. [Google Scholar] [CrossRef]
- Sapuan, S.; Lok, H.; Ishak, M.; Misri, S. Mechanical properties of hybrid glass/sugar palm fiber reinforced unsaturated polyester composites. Chin. J. Polym. Sci. 2013, 31, 1394–1403. [Google Scholar] [CrossRef]
- Velmurugan, R.; Manikandan, V. Mechanical properties of palmyra/glass fiber hybrid composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2216–2226. [Google Scholar] [CrossRef]
- Dkier, M.; Yousfi, M.; Lamnawar, K.; Maazouz, A. Chemo-rheological studies and monitoring of high-Tg reactive polyphtalamides towards a fast innovative RTM processing of fiber-reinforced thermoplastic composites. Eur. Polym. J. 2019, 120, 109227. [Google Scholar] [CrossRef]
- Bénéthuilière, T.; Duchet-Rumeau, J.; Dubost, E.; Peyre, C.; Gérard, J. Vinylester/glass fiber interface: Still a key component for designing new styrene-free SMC composite materials. Compos. Sci. Technol. 2020, 190, 108037. [Google Scholar] [CrossRef]
- Piggott, M. Debonding and friction at fiber-polymer interfaces. I: Criteria for failure and sliding. Compos. Sci. Technol. 1987, 30, 295–306. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Hailatihan, B.; Mi, L.; Baheti, Y.; Yan, Y. Effect of the Addition of Thermoplastic Resin and Composite on Mechanical and Thermal Properties of Epoxy Resin. Polymers 2022, 14, 1087. [Google Scholar] [CrossRef]
- Manson, J.A.; Sperling, L.H. Polymer Blends and Composites. Plenum Press A Div. Plenum Publ. Corp. N. Y. 1976, 306, 2. [Google Scholar]
- Theocaris, P.S. The Mesophase Concept in Composites; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 11. [Google Scholar]
- Takayanagi, M.; Imada, K.; Kajiyama, T. Mechanical properties and fine structure of drawn polymers. In Journal of Polymer Science Part C: Polymer Symposia; Wiley Subscription Services, Inc., A Wiley Company: New York, NY, USA, 1967; pp. 263–281. [Google Scholar]
- McClung, A.J.; Tandon, G.P.; Baur, J.W. Strain rate-and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech. Time-Depend. Mater. 2012, 16, 205–221. [Google Scholar] [CrossRef]
- Richeton, J.; Schlatter, G.; Vecchio, K.; Rémond, Y.; Ahzi, S. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 2005, 46, 8194–8201. [Google Scholar] [CrossRef]
Glass Samples | P2O5 | CaO | K2O | MgO | Fe2O3 | TiO2 | O/P | Density (g/cm3) |
---|---|---|---|---|---|---|---|---|
P52Fe0Ti0 | 52 | 24 | 11 | 13 | 0 | 0 | 2.96 | 2.37 ± 0.03 |
P52Fe0Ti0.5 | 52 | 24 | 10.5 | 13 | 0 | 0.5 | 2.96 | 2.42 ± 0.03 |
P52Fe0Ti1 | 52 | 24 | 10 | 13 | 0 | 1 | 2.97 | 2.46 ± 0.03 |
P52Fe1Ti0 | 52 | 24 | 10 | 13 | 1 | 0 | 2.98 | 2.79 ± 0.03 |
P52Fe3Ti0 | 52 | 24 | 8 | 13 | 3 | 0 | 3.01 | 2.48 ± 0.03 |
P52Fe5Ti0 | 52 | 24 | 6 | 13 | 5 | 0 | 3.05 | 2.56 ± 0.03 |
P52Fe1Ti0.5 | 52 | 24 | 9.5 | 13 | 1 | 0.5 | 2.98 | 2.46 ± 0.03 |
P52Fe3Ti0.5 | 52 | 24 | 7.5 | 13 | 3 | 0.5 | 3.02 | 2.52 ± 0.03 |
P52Fe5Ti0.5 | 52 | 24 | 5.5 | 13 | 5 | 0.5 | 3.06 | 2.69 ± 0.03 |
P52Fe1Ti1 | 52 | 24 | 9 | 13 | 1 | 1 | 2.99 | 2.56 ± 0.03 |
P52Fe3Ti1 | 52 | 24 | 7 | 13 | 3 | 1 | 3.02 | 2.63 ± 0.03 |
P52Fe5Ti1 | 52 | 24 | 5 | 13 | 5 | 1 | 3.06 | 2.79 ± 0.03 |
PGF Samples | DR (g·cm−2·min−1) × 10−15 | |||
---|---|---|---|---|
pH = 4.5 | pH = 5.5 | pH = 6.5 | pH = 8.5 | |
P52Fe0Ti0 | 4.65 | 7.62 | 11 | 3.76 |
P52Fe1Ti0 | 1.16 | 2.87 | 5.6 | 1.06 |
P52Fe3Ti0 | 0.42 | 0.58 | 1.3 | 0.33 |
P52Fe5Ti0 | 0.098 | 0.56 | 0.19 | 0.14 |
P52Fe0Ti0.5 | 2.8 | 5.26 | 7.5 | 2.93 |
P52Fe0Ti1 | 1.11 | 2.17 | 3 | 1.39 |
P52Fe1Ti0.5 | 0.83 | 0.96 | 2.1 | 0.88 |
P52Fe3Ti0.5 | 0.24 | 0.31 | 0.52 | 0.19 |
P52Fe5Ti0.5 | 0.048 | 0.076 | 0.0927 | 0.066 |
P52Fe1Ti1 | 0.53 | 0.53 | 1.09 | 0.35 |
P52Fe3Ti1 | 0.071 | 0.098 | 1.5 | 0.062 |
P52Fe5Ti1 | 0.049 | 0.051 | 0.0535 | 0.025 |
Samples | Mass Fraction (%) | Composite Density g/cm3 | Volume Fraction (%) | Thickness (mm) |
---|---|---|---|---|
Polyester/5% PGF | 5 | 1.24 ± 0.01 | 2.3 | 5 |
Polyester/9% PGF | 9 | 1.26 ± 0.01 | 4.1 | 5 |
Polyester/12% PGF | 12 | 1.30 ± 0.01 | 5.5 | 5 |
Polyester/16% PGF | 16 | 1.34 ± 0.01 | 7.4 | 5 |
Polyester/20% PGF | 20 | 1.36 ± 0.01 | 9.2 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saloumi, N.; Daki, I.; El Bouchti, M.; Oumam, M.; Manoun, B.; Yousfi, M.; Hannache, H.; Cherkaoui, O. Development and Characterization of Phosphate Glass Fibers and Their Application in the Reinforcement of Polyester Matrix Composites. Materials 2022, 15, 7601. https://doi.org/10.3390/ma15217601
Saloumi N, Daki I, El Bouchti M, Oumam M, Manoun B, Yousfi M, Hannache H, Cherkaoui O. Development and Characterization of Phosphate Glass Fibers and Their Application in the Reinforcement of Polyester Matrix Composites. Materials. 2022; 15(21):7601. https://doi.org/10.3390/ma15217601
Chicago/Turabian StyleSaloumi, Nezha, Iliass Daki, Mehdi El Bouchti, Mina Oumam, Bouchaib Manoun, Mohamed Yousfi, Hassan Hannache, and Omar Cherkaoui. 2022. "Development and Characterization of Phosphate Glass Fibers and Their Application in the Reinforcement of Polyester Matrix Composites" Materials 15, no. 21: 7601. https://doi.org/10.3390/ma15217601
APA StyleSaloumi, N., Daki, I., El Bouchti, M., Oumam, M., Manoun, B., Yousfi, M., Hannache, H., & Cherkaoui, O. (2022). Development and Characterization of Phosphate Glass Fibers and Their Application in the Reinforcement of Polyester Matrix Composites. Materials, 15(21), 7601. https://doi.org/10.3390/ma15217601