Multi-Scale Characterization of High-Temperature Properties and Thermal Storage Stability Performance of Discarded-Mask-Modified Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Base Asphalt
2.1.2. Preparation of DM-Modified Asphalt
2.2. Characterization Methods
2.2.1. Physical Properties
2.2.2. High-Temperature Rheological Properties
2.2.3. Thermal Storage Stability Test
2.2.4. Fourier Transform Infrared Spectroscopy
2.3. Molecular Dynamics Simulation
- The asphalt model is constructed using the “Construction” task in the Amorphous cell module to ensure that the asphalt components are randomly distributed in the cells.
- We optimized the structure in 10,000 steps by using the “Geometry Optimization” task in the Forcite module to minimize the energy of the system.
- We performed 5 cycles (298–598 K) of annealing optimization for a total of 50 ps through the “Anneal” task in the Forcite module to eliminate local high energy sites in the model.
- We performed 100 ps of dynamics calculations through the “Dynamics“ task in the Forcite module to fully mix the molecules in the asphalt.
3. Results and Discussions
3.1. Physical Properties
3.2. High Temperature Rheological Properties
3.3. Thermal Storage Stability
3.4. Fourier Transform Infrared Spectroscopy Analysis
3.5. Molecular Dynamics Simulation
3.5.1. DM-modified Asphalt Model Construction
3.5.2. Model Reasonableness Verification
3.5.3. Cohesive Energy Density
3.5.4. Fractional Free Volume
3.5.5. Binding Energy
4. Conclusions
- (1)
- The DM modifier improves the high temperature deformation resistance of asphalt. The softening point, rotational viscosity, complex modulus and rutting factor of the modified asphalt were increased with the increase of modifier dosing. At the same time, the phase angle of the modified asphalt decreased.
- (2)
- The results of the segregation experiments showed that the addition of DM modifier was detrimental to the thermal storage stability of the asphalt. The DM modifier admixture was increased from 1% to 4%, and the ΔTR&B between the top and bottom of the sample increased from 2.2 °C to 17.1 °C, VS (135 °C) from 0.27 to 1.14 and RS (58 °C) from 0.18 to 1.94. It is noteworthy that 1% is an acceptable admixture.
- (3)
- The main raw material in DM modifier is polypropylene, and the modification method is mainly physical blending. The results of FTIR spectra showed that the DM material had absorption peaks at 2922 cm−1, 2852 cm−1, 1454 cm−1, 1371 cm−1, 1155 cm−1, 965 cm−1, which were consistent with the main characteristic peaks of polypropylene. When 2% DM modifier was blended, there was no obvious new characteristic peaks found in the modified asphalt, indicating that the DM-modified asphalt mode is mainly a physical blending.
- (4)
- MD simulation results show that the addition of DM modifier can increase the cohesive energy density (CED) and reduce the fractional free volume (FFV) of asphalt, which to some extent indicates that the deformation resistance of DM-modified asphalt increases with the increase of modifier admixture. The binding energy between DM modifier and base asphalt decreases with increasing modifier admixture, which to some extent indicates that the compatibility and thermal storage stability of DM-modified asphalt decreases with increasing modifier admixture. It is worth noting that 1% is still an acceptable amount at the microscopic level.
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Fadare, O.O.; Okoffo, E.D. COVID-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 2020, 737, 140279. [Google Scholar] [CrossRef]
- Wu, H.-l.; Huang, J.; Zhang, C.J.; He, Z.; Ming, W.-K. Facemask shortage and the novel coronavirus disease (COVID-19) outbreak: Reflections on public health measures. eClinicalMedicine 2020, 21, 100329. [Google Scholar] [CrossRef]
- Dharmaraj, S.; Ashokkumar, V.; Hariharan, S.; Manibharathi, A.; Show, P.L.; Chong, C.T.; Ngamcharussrivichai, C. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere 2021, 272, 129601. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Z.; Wang, N.-N.; Tseng, M.-L.; Huang, Y.-M.; Li, N.-L. Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. J. Clean. Prod. 2020, 249, 119411. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, Y.; Li, K. Using waste plastics as asphalt modifier: A review. Materials 2021, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, K.; Wu, C.; Liu, K.; Jiang, K. Preparation of bio-oil and its application in asphalt modification and rejuvenation: A review of the properties, practical application and life cycle assessment. Constr. Build. Mater. 2020, 262, 120528. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, S.; Liu, Q.; Xie, J.; Yang, C.; Wang, F.; Wan, P. Recycling waste disposable medical masks in improving the performance of asphalt and asphalt mixtures. Constr. Build. Mater. 2022, 337, 127621. [Google Scholar] [CrossRef]
- Yalcin, E.; Ozdemir, A.M.; Kok, B.V.; Yilmaz, M.; Yilmaz, B. Influence of pandemic waste face mask on rheological, physical and chemical properties of bitumen. Constr. Build. Mater. 2022, 337, 127576. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Saberian, M.; Rahat, M.H.H.; Massarra, C.; Buckhalter, C.; Farrington, J.; Collins, T.; Johnson, J. Use of COVID-19 single-use face masks to improve the rutting resistance of asphalt pavement. Sci. Total Environ. 2022, 826, 154118. [Google Scholar] [CrossRef] [PubMed]
- Goli, A.; Sadeghi, P. Evaluation on the use of COVID-19 single-use face masks to improve the properties of hot mix asphalt. Road Mater. Pavement Des. 2022, 23, 1–18. [Google Scholar] [CrossRef]
- Han, S.; Xue, X.; Yu, C.; Wang, Y.; Chen, J.; Hu, K.; Liu, C. Diffusion and reinforcement mechanism study of the effect of styrene/butadiene ratio on the high-temperature property of asphalt using molecular dynamics simulation. Mol. Simul. 2022, 48, 290–302. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, J.; Pei, J.; Ma, W.; Hu, Z.; Guan, Y. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation. Front. Struct. Civ. Eng. 2020, 14, 435–445. [Google Scholar] [CrossRef]
- Long, Z.; Zhou, S.; Jiang, S.; Ma, W.; Ding, Y.; You, L.; Tang, X.; Xu, F. Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation. J. Mol. Model. 2021, 27, 81. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Yu, C.; Yang, Q.; Chen, Y.; Chen, G.; Ma, R. Multi–scale enhancement mechanisms of graphene oxide on styrene–butadiene–styrene modified asphalt: An exploration from molecular dynamics simulations. Mater. Des. 2021, 208, 109901. [Google Scholar] [CrossRef]
- Hu, K.; Yu, C.; Yang, Q.; Li, Z.; Zhang, W.; Zhang, T.; Feng, Y. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: A new observation from molecular dynamics simulation. Constr. Build. Mater. 2022, 320, 126263. [Google Scholar] [CrossRef]
- Yu, C.; Hu, K.; Yang, Q.; Wang, D.; Zhang, W.; Chen, G.; Kapyelata, C. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations. Polymers 2021, 13, 1658. [Google Scholar] [CrossRef]
- Yu, C.-h.; Hu, K.; Chen, G.-x.; Chang, R.; Wang, Y. Molecular dynamics simulation and microscopic observation of compatibility and interphase of composited polymer modified asphalt with carbon nanotubes. J. Zhejiang Univ. Sci. A 2021, 22, 528–546. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Zhang, Y.; Lin, P.; Apostolidis, P.; Erkens, S.; Li, M.; Xu, J. Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods. Constr. Build. Mater. 2021, 287, 123058. [Google Scholar] [CrossRef]
- Kariwa, H.; Fujii, N.; Takashima, I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 2006, 212 (Suppl. S1), 119–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.-g.; Zheng, H.-y.; Gu, J.; Li, F.; Lv, R.-l.; Deng, Y.-y.; Xu, W.-z.; Tong, Y.-q. Effects of different temperature and time durations of virus inactivation on results of real-time fluorescence PCR testing of COVID-19 viruses. Curr. Med. Sci. 2020, 40, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Wang, H.; Chen, Y.; Miljković, M.; Feng, P.; Ding, H. Thermal storage stability and rheological properties of multi-component styrene-butadiene-styrene composite modified bitumen. Constr. Build. Mater. 2022, 322, 126494. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Jiang, X.; You, Z.; Yang, X.; Ye, M. Thermal storage stability of bio-oil modified asphalt. J. Mater. Civ. Eng. 2018, 30, 04018054. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Chen, Z.; Pei, J.; Li, R.; Xiao, F. Performance characteristics of asphalt materials based on molecular dynamics simulation—A review. Constr. Build. Mater. 2018, 189, 695–710. [Google Scholar] [CrossRef]
- Yu, R.; Wang, Q.; Wang, W.; Xiao, Y.; Wang, Z.; Zhou, X.; Zhang, X.; Zhu, X.; Fang, C. Polyurethane/graphene oxide nanocomposite and its modified asphalt binder: Preparation, properties and molecular dynamics simulation. Mater. Des. 2021, 209, 109994. [Google Scholar] [CrossRef]
- Upadhyay, S.; Mallikarjunan, V.; Subbaraj, V.K.; Varughese, S. Swelling and diffusion characteristics of polar and nonpolar polymers in asphalt. J. Appl. Polym. Sci. 2008, 109, 135–143. [Google Scholar] [CrossRef]
- Alghrafy, Y.M.; Abd Alla, E.-S.M.; El-Badawy, S.M. Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste. Constr. Build. Mater. 2021, 273, 121771. [Google Scholar] [CrossRef]
- Zhao, X.; Rahman, M.U.; Dissanayaka, T.; Gharagheizi, F.; Lacerda, C.; Senadheera, S.; Hedden, R.C.; Christopher, G.F. Rheological behavior of a low crystallinity polyolefin-modified asphalt binder for flexible pavements. Case Stud. Constr. Mater. 2021, 15, e00640. [Google Scholar] [CrossRef]
- Liu, C.; Dai, Z.; Zhou, R.; Ke, Q.; Huang, C. Fabrication of polypropylene-g-(diallylamino triazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology. J. Chem. 2019, 2019, 3435095. [Google Scholar] [CrossRef] [Green Version]
- Riba, J.-R.; Cantero, R.; Canals, T.; Puig, R. Circular economy of post-consumer textile waste: Classification through infrared spectroscopy. J. Clean. Prod. 2020, 272, 123011. [Google Scholar] [CrossRef]
- Fu, Y.; Liao, L.; Lan, Y.; Yang, L.; Mei, L.; Liu, Y.; Hu, S. Molecular dynamics and mesoscopic dynamics simulations for prediction of miscibility in polypropylene/polyamide-11 blends. J. Mol. Struct. 2012, 1012, 113–118. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, B.; Zhang, Y.; Wei, J.; Cao, X. Molecular Dynamics Simulation to Investigate the Influence of SBS on Molecular Agglomeration Behavior of Asphalt. J. Mater. Civ. Eng. 2015, 27, C4014004. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, J.; Pei, J.; Zhou, B.; Falchetto, A.C.; Hu, Z. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation. Constr. Build. Mater. 2020, 252, 118956. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H. Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: A molecular dynamics study. Appl. Surf. Sci. 2020, 510, 145435. [Google Scholar] [CrossRef]
- Long, Z.; You, L.; Tang, X.; Ma, W.; Ding, Y.; Xu, F. Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation. Constr. Build. Mater. 2020, 255, 119354. [Google Scholar] [CrossRef]
- Li, C.; Fan, S.; Xu, T. Method for Evaluating Compatibility between SBS Modifier and Asphalt Matrix Using Molecular Dynamics Models. J. Mater. Civ. Eng. 2021, 33, 04021207. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, D.; Wu, Q.; Lang, R.; Shangguan, S.; Liao, Z.; Wei, N. Molecular dynamics study on the glass forming process of asphalt. Constr. Build. Mater. 2019, 214, 430–440. [Google Scholar] [CrossRef]
Item | Result | Requirement |
---|---|---|
Penetration at 25 °C (0.1 mm) | 74 | 60–80 |
Penetration index | −1.4 | −1.5 to 1.0 |
Softening point (°C) | 46 | ≥45 |
Ductility at 10 °C (cm) | 30 | ≥25 |
Density at 15 °C (g/cm−1) | 1.039 | Measured records |
Dynamic viscosity at 60 °C (Pa·s) | 182 | 160 |
Group | Molecular Formula | Molecular Formula Quality (g/mol) | Quality Percentage (%) | Number of Molecules | |
---|---|---|---|---|---|
Asphaltene | Asp-1 | C42 H54 O | 574.893 | 17.1 | 9 |
Asp-2 | C51 H62 S | 707.117 | 6 | ||
Asp-3 | C66 H81 N | 888.381 | 9 | ||
Saturate | Sa-1 | C30 H62 | 422.826 | 10.6 | 12 |
Sa-2 | C35 H62 | 482.881 | 12 | ||
Aromatic | Ar-1 | C35 H44 | 464.737 | 30.6 | 33 |
Ar-2 | C30 H46 | 406.698 | 39 | ||
Resin | Re-1 | C40 H59 N | 553.919 | 41.7 | 12 |
Re-2 | C40 H60 S | 572.980 | 12 | ||
Re-3 | C18 H10 S2 | 290.398 | 15 | ||
Re-4 | C36 H57 N | 503.859 | 12 | ||
Re-5 | C29 H50 O | 414.718 | 45 |
Item (g/cm3) | Base Asphalt | DM1 | DM2 | DM3 | DM4 |
---|---|---|---|---|---|
density | 0.964 | 0.963 | 0.96 | 0.959 | 0.958 |
Item | Base Asphalt | DM1 | DM2 | DM3 | DM4 |
---|---|---|---|---|---|
Occupied volume | 144,143.22 | 145,541.47 | 146,794.95 | 148,547.39 | 149,565.24 |
Free volume | 33,517.26 | 33,174.82 | 32,804.71 | 32,500.49 | 32,517.83 |
FFV | 18.87 | 18.56 | 18.27 | 17.95 | 17.86 |
Item | Base Asphalt | DM1 | DM2 | DM3 | DM4 |
---|---|---|---|---|---|
Occupied volume | 144,147.15 | 145,214.31 | 146,586.7 | 148,169.41 | 149,491.37 |
Free volume | 36,912.7 | 35,109.69 | 35,221.84 | 35,431.99 | 35,546.49 |
FFV | 20.39 | 19.479 | 19.37 | 19.30 | 19.21 |
Dosage | Energy (kcal/mol) | |||
---|---|---|---|---|
DM-Modified Asphalt | Base Asphalt | PP | Binding Energy | |
1% | 40,298.764 | 40,281.658 | 85.422 | 68.316 |
2% | 40,496.908 | 40,281.658 | 181.537 | −33.713 |
3% | 40,608.717 | 40,281.658 | 262.520 | −64.539 |
4% | 40,789.203 | 40,281.658 | 330.748 | −176.797 |
Dosage | Energy (kcal/mol) | |||
---|---|---|---|---|
DM-Modified Asphalt | Base Asphalt | PP | Binding Energy | |
1% | 44,471.8077 | 44,341.429 | 141.495 | 11.116 |
2% | 44v667.35295 | 44,341.429 | 248.974 | −76.950 |
3% | 44,823.86759 | 44,341.429 | 380.223 | −102.216 |
4% | 45,115.72166 | 44,341.429 | 505.819 | −268.474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hui, B.; Yang, X.; Wang, H.; Xu, N.; Feng, P.; Ma, Z.; Wang, H. Multi-Scale Characterization of High-Temperature Properties and Thermal Storage Stability Performance of Discarded-Mask-Modified Asphalt. Materials 2022, 15, 7593. https://doi.org/10.3390/ma15217593
Li Y, Hui B, Yang X, Wang H, Xu N, Feng P, Ma Z, Wang H. Multi-Scale Characterization of High-Temperature Properties and Thermal Storage Stability Performance of Discarded-Mask-Modified Asphalt. Materials. 2022; 15(21):7593. https://doi.org/10.3390/ma15217593
Chicago/Turabian StyleLi, Yuanle, Bing Hui, Xinyi Yang, Huimin Wang, Ning Xu, Ponan Feng, Ziye Ma, and Hainian Wang. 2022. "Multi-Scale Characterization of High-Temperature Properties and Thermal Storage Stability Performance of Discarded-Mask-Modified Asphalt" Materials 15, no. 21: 7593. https://doi.org/10.3390/ma15217593
APA StyleLi, Y., Hui, B., Yang, X., Wang, H., Xu, N., Feng, P., Ma, Z., & Wang, H. (2022). Multi-Scale Characterization of High-Temperature Properties and Thermal Storage Stability Performance of Discarded-Mask-Modified Asphalt. Materials, 15(21), 7593. https://doi.org/10.3390/ma15217593