Experimental Study on Mechanical Properties of Concrete at Super-Early Age
Abstract
1. Introduction
2. Experimental Materials and Process
3. Regression Analysis Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mihashi, H.; Leite, J.P.B. State-of-the-art report on control of cracking in early age concrete. J. Adv. Concr. Technol. 2004, 2, 141–154. [Google Scholar] [CrossRef]
- Nehdi, M.; Soliman, A.M. Early-age properties of concrete: Overview of fundamental concepts and state-of-the-art research. Proc. Inst. Civ. Eng.-Constr. Mater. 2011, 164, 57–77. [Google Scholar] [CrossRef]
- Maruyama, I.; Lura, P. Properties of early-age concrete relevant to cracking in massive concrete. Cem. Concr. Res. 2019, 123, 105770. [Google Scholar] [CrossRef]
- Swaddiwudhipong, S.; Lu, H.-R.; Wee, T.-H. Direct tension test and tensile strain capacity of concrete at early age. Cem. Concr. Res. 2003, 33, 2077–2084. [Google Scholar] [CrossRef]
- Yoshitake, I.; Rajabipour, F.; Mimura, Y.; Scanlon, A. A prediction method of tensile Young’s modulus of concrete at early age. Adv. Civ. Eng. 2012, 2012, 391214. [Google Scholar] [CrossRef]
- Hasan, M.M.; Kabir, A. Prediction of compressive strength of concrete from early age test result. In Proceedings of the 4th Annual Paper Meet and 1st Civil Engineering Congress, Dhaka, Bangladesh, 22–24 December 2011; pp. 978–984. [Google Scholar]
- Peng, X.; Zhuang, Z.; Yang, Q. Predictive Modeling of Compressive Strength for Concrete at Super Early Age. Materials 2022, 15, 4914. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Wan, L.; Wendner, R.; Liang, B.; Cusatis, G. Analysis of the behavior of ultra high performance concrete at early age. Cem. Concr. Compos. 2016, 74, 120–135. [Google Scholar] [CrossRef]
- Shen, D.; Wang, X.; Cheng, D.; Zhang, J.; Jiang, G. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age. Constr. Build. Mater. 2016, 106, 512–522. [Google Scholar] [CrossRef]
- Shen, D.; Liu, X.; Zeng, X.; Zhao, X.; Jiang, G. Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Constr. Build. Mater. 2020, 244, 117874. [Google Scholar] [CrossRef]
- Azenha, M.; Faria, R.; Ferreira, D. Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cem. Concr. Compos. 2009, 31, 369–378. [Google Scholar] [CrossRef]
- Wu, S.; Huang, D.; Lin, F.-B.; Zhao, H.; Wang, P. Estimation of cracking risk of concrete at early age based on thermal stress analysis. J. Therm. Anal. Calorim. 2011, 105, 171–186. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, D.; Gao, Y.; Wei, S. Determination of moisture diffusion coefficient of concrete at early age from interior humidity measurements. Dry. Technol. 2011, 29, 689–696. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, K.; Huang, Y. Calculation of moisture distribution in early-age concrete. J. Eng. Mech. 2009, 135, 871–880. [Google Scholar] [CrossRef]
- Hilaire, A.; Benboudjema, F.; Darquennes, A.; Berthaud, Y.; Nahas, G. Modeling basic creep in concrete at early-age under compressive and tensile loading. Nucl. Eng. Des. 2014, 269, 222–230. [Google Scholar] [CrossRef]
- Zhang, J.; Dongwei, H.; Wei, S. Experimental study on the relationship between shrinkage and interior humidity of concrete at early age. Mag. Concr. Res. 2010, 62, 191–199. [Google Scholar] [CrossRef]
- Altoubat, S.A.; Lange, D.A. Creep, shrinkage, and cracking of restrained concrete at early age. ACI Mater. J. 2001, 98, 323–331. [Google Scholar]
- Di Luzio, G.; Cusatis, G. Solidification–microprestress–microplane (SMM) theory for concrete at early age: Theory, validation and application. Int. J. Solids Struct. 2013, 50, 957–975. [Google Scholar] [CrossRef]
- Soliman, A.M.; Nehdi, M.L. Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age. Mater. Struct. 2011, 44, 879–899. [Google Scholar] [CrossRef]
- Wong, A.; Childs, P.A.; Berndt, R.; Macken, T.; Peng, G.; Gowripalan, N. Simultaneous measurement of shrinkage and temperature of reactive powder concrete at early-age using fibre Bragg grating sensors. Cem. Concr. Compos. 2007, 29, 490–497. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, K.; Lange, D.A.; Zhou, H.; Wang, W.; Zhu, D. Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age. Cem. Concr. Compos. 2019, 99, 191–202. [Google Scholar] [CrossRef]
- Cortas, R.; Rozière, E.; Staquet, S.; Hamami, A.; Loukili, A.; Delplancke-Ogletree, M.-P. Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age. Cem. Concr. Compos. 2014, 50, 1–9. [Google Scholar] [CrossRef]
- Liu, G.T.; Gao, H.; Chen, F.Q. Microstudy on creep of concrete at early age under biaxial compression. Cem. Concr. Res. 2002, 32, 1865–1870. [Google Scholar] [CrossRef]
- Farah, M.; Grondin, F.; Alam, S.; Loukili, A. Experimental approach to investigate creep-damage bilateral effects in concrete at early age. Cem. Concr. Compos. 2019, 96, 128–137. [Google Scholar] [CrossRef]
- Østergaard, L.; Lange, D.A.; Altoubat, S.A.; Stang, H. Tensile basic creep of early-age concrete under constant load. Cem. Concr. Res. 2001, 31, 1895–1899. [Google Scholar] [CrossRef]
- Ansell, A.; Silfwerbrand, J. The vibration resistance of young and early-age concrete. Struct. Concr. 2003, 4, 125–134. [Google Scholar] [CrossRef]
- Dunham, M.R.; Rush, A.S.; Hanson, J.H. Effects of induced vibrations on early age concrete. J. Perform. Constr. Facil. 2007, 21, 179–184. [Google Scholar] [CrossRef]
- Wojtowicz, A.; Michalek, J.; Ubysz, A. Range of dynamic impact of geotechnical works on reinforced concrete structures. In Proceedings of the XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019), Tashkent, Uzbekistan, 18–21 April 2019; Volkov, A., Pustovgar, A., Sultanov, T., Adamtsevich, A., Eds.; EDP Sciences: Les Ulis, France, 2019; pp. 1–8. [Google Scholar]
- Wojtowicz, A.; Ubysz, A.; Michałek, J. How vibrations affect steel-to-concrete adherence. In Proceedings of the VI International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education” (IPICSE-2018), Moscow, Russia, 14–16 November 2018; Volkov, A., Pustovgar, A., Adamtsevich, A., Eds.; EDP Sciences: Les Ulis, France, 2018; Volume 251, pp. 1–8. [Google Scholar]
Cement: Water: Sand: Coarse Aggregate = 1:0.43:1.22:2.27 | |||
---|---|---|---|
Cement | Water | Fine Aggregate | Coarse Aggregate |
488.37 kg/m3 | 210 kg/m3 | 595.57 kg/m3 | 1106.06 kg/m3 |
Time | 12:11 a.m. | 14:00 p.m. | 15:05 p.m. | 16:20 p.m. |
---|---|---|---|---|
The penetration resistance | 3.87 MPa | 6.24 MPa | 21.8 MPa | 31.5 MPa |
Time | ||||
---|---|---|---|---|
= 100 kPa | = 200 kPa | = 300 kPa | = 400 kPa | |
12:11 a.m. | 203.6 | 372.9 | 481.1 | 578.3 |
12:41 a.m. | 192.8 | 374.7 | 482.8 | 756.7 |
13:20 p.m. | 236.0 | 454.9 | 562.2 | 681.9 |
14:00 p.m. | 151.4 | 414.4 | 351.4 | 924.3 |
14:35 p.m. | 281.1 | 390.1 | 618.0 | 909.9 |
15:05 p.m. | 324.3 | 320.7 | 500.0 | 891.9 |
15:50 p.m. | 331.5 | 341.4 | 672.1 | 720.7 |
16:20 p.m. | 264.9 | 434.2 | 454.9 | 677.5 |
Time | 12.11 a.m. | 12:41 a.m. | 13:20 p.m. | 14:00 p.m. | 14:35 p.m. | 15:05 p.m. | 15:50 p.m. | 16:20 p.m. |
---|---|---|---|---|---|---|---|---|
1.2323 (50.94°) | 1.7998 (60.94°) | 1.4450 (55.32°) | 2.2557 (66.09°) | 2.1143 (64.69°) | 1.8821 (62.02°) | 1.4983 (56.28°) | 1.2585 (51.53°) | |
(, kPa) | 100.9 | 1.8 | 122.5 | −103.55 | 21.2 | 38.7 | 141.85 | 143.25 |
Time | 12.11 a.m. | 12:41 a.m. | 13:20 p.m. | 14:00 p.m. | 14:35 p.m. | 15:05 p.m. | 15:50 p.m. | 16:20 p.m. |
---|---|---|---|---|---|---|---|---|
() | 1.2490 (51.32°) | 1.8738 (61.91°) | 1.4863 (56.07°) | 2.5820 (68.82°) | 2.096 (64.49°) | 1.892 (62.14°) | 1.7030 (59.58°) | 1.2165 (50.58°) |
(, kPa) | 78.7 | 3.603 | 87.3667 | −105.7337 | 71.5 | 135.1 | 161.2 | 190.9 |
Length of Time | 3.35 h | 4.5 h | 5.75 h | 6.25 h | 7 h | 7.5 h |
---|---|---|---|---|---|---|
Cohesion (kPa) | 78.7 | 87.3667 | 71.5 | 135.1 | 161.2 | 190.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Sun, Y.; Peng, X. Experimental Study on Mechanical Properties of Concrete at Super-Early Age. Materials 2022, 15, 7582. https://doi.org/10.3390/ma15217582
Yang Q, Sun Y, Peng X. Experimental Study on Mechanical Properties of Concrete at Super-Early Age. Materials. 2022; 15(21):7582. https://doi.org/10.3390/ma15217582
Chicago/Turabian StyleYang, Qiuwei, Yun Sun, and Xi Peng. 2022. "Experimental Study on Mechanical Properties of Concrete at Super-Early Age" Materials 15, no. 21: 7582. https://doi.org/10.3390/ma15217582
APA StyleYang, Q., Sun, Y., & Peng, X. (2022). Experimental Study on Mechanical Properties of Concrete at Super-Early Age. Materials, 15(21), 7582. https://doi.org/10.3390/ma15217582