Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050
Abstract
1. Introduction
2. Material Specimen
3. Methods
4. Discussion and Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahsavarian, T.; Zhang, D.; McGinnis, P.; Walker, S.; Zhang, Z.Y.; Cao, Y. Altitude Readiness of High-Voltage IGBTs Subjected to the Partial Discharge at Harsh Environmental Conditions for Hybrid Electric Aircraft Propulsion. IEEE Trans. Power Electron. 2022, 37, 3733–3736. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Nopour, R.; Dabbagh, A. Effects of polymer’s viscoelastic properties and curved shape of the CNTs on the dynamic response of hybrid nanocomposite beams. Waves Random Complex Media 2022, 10, 1–18. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, S.; Liang, Z.Y.; Eder, S.H.K.; Kennel, R. Dynamic-Balancing Robust Current Control for Wireless Drone-in-Flight Charging. IEEE Trans. Power Electron. 2022, 37, 3626–3635. [Google Scholar] [CrossRef]
- Lu, S.F.; Ding, H.; Rong, K.B.; Rong, S.F.; Tang, J.Y.; Xing, B. Composite mechanical deformation based semi-analytical prediction model for dynamic loaded contact pressure of thin-walled aerospace spiral bevel gears. Thin-Walled Struct. 2021, 171, 108794. [Google Scholar] [CrossRef]
- Rezaei, M.; Hubert, G.; Martin-Holgado, P.; Morilla, Y.; Fabero, J.C.; Mecha, H.; Franco, F.J.; Puchner, H.; Clemente, J.A. Impact of Dynamic Voltage Scaling on SEU Sensitivity of COTS Bulk SRAMs and A-LPSRAMs Against Proton Radiation. IEEE Trans. Nucl. Sci. 2022, 69, 126–133. [Google Scholar] [CrossRef]
- Ma, J.J.; Li, Y.F.; Zhang, D.H.; Zhao, B.; Wang, G.; Pang, X.Y. Dynamic response prediction model of thin-wall workpiece-fixture system with magnetorheological damping in milling. J. Manuf. Process. 2021, 74, 500–510. [Google Scholar] [CrossRef]
- Pedroni, N. Computational methods for the robust optimization of the design of a dynamic aerospace system in the presence of aleatory and epistemic uncertainties. Mech. Syst. Signal Process. 2022, 164, 108206. [Google Scholar] [CrossRef]
- Liu, J.; Chen, N.; Song, Y.H.; Hu, J.; Xie, K. New Dynamic Stability Rig for Tri-sonic Wind-Tunnel. Asia-Pac. Int. Symp. Aerosp. Technol. 2015, 99, 1591–1596. [Google Scholar]
- Solodov, I.; Kreutzbruck, M. Single-sided access remote imaging via resonant airborne activation of damage. NDT E Int. 2019, 107, 102146. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhao, Y.X.; Zhang, H.; Deng, M.X.; Hu, N.; Bi, X.Y. Experimental and Numerical Investigation of the Micro-Crack Damage in Elastic Solids by Two-Way Collinear Mixing Method. Sensors 2021, 21, 2061. [Google Scholar] [CrossRef]
- Ten Cate, J.A.; Smith, E.; Byers, L.W.; Michel, A.S. Nonlinear resonant ultrasound for damage detection. AIP Conf. Proc. 2000, 509, 1387–1392. [Google Scholar]
- Li, F.; Wu, P.; Zeng, J.; Liu, C.; Wu, H. Vibration fatigue dynamic stress simulation under multi-load input condition: Application to metro lifeguard. Eng. Failure Anal. 2019, 99, 141–152. [Google Scholar] [CrossRef]
- Mršnik, M.; Slavič, J.; Boltežar, M. Vibration fatigue using modal decomposition. Mech. Syst. Signal Process. 2018, 98, 548–556. [Google Scholar] [CrossRef]
- Mršnik, M.; Slavič, J.; Boltežar, M. Multiaxial vibration fatigue—A theoretical and experimental comparison. Mech. Syst. Signal Process. 2016, 76, 409–423. [Google Scholar] [CrossRef]
- Dentsoras, A.J.; Dimarogonas, A.D. Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations. Int. J. Fract. 1983, 23, 15–22. [Google Scholar] [CrossRef]
- Damir, A.; Elkhatib, A.; Nassef, G. Prediction of fatigue life using modal analysis for grey and ductile cast iron. Int. J. Fatigue 2007, 29, 499–507. [Google Scholar] [CrossRef]
- Concli, F.; Maccioni, L.; Bonaiti, L. Reliable gear design: Translation of the results of single tooth bending fatigue tests through the combination of numerical simulations and fatigue criteria. WIT Trans. Eng. 2021, 130, 111–122. [Google Scholar]
- Poursaeidi, E.; Arhani, M.R.M. Failure investigation of an auxiliary steam turbine. Eng. Fail. Anal. 2010, 17, 1328–1336. [Google Scholar] [CrossRef]
- Wang, L.; Song, H.; Wang, Z. A review on an accelerated random vibration test of transport packaging. Int. J. Vib. Shock 2022, 41, 277–286. [Google Scholar]
- Zhang, L.; Li, J. The Status Quo of Aerospace Engine Vibration Fatigue. J. Phys. Conf. Ser. 2021, 1744, 022123. [Google Scholar] [CrossRef]
- Chen, H.-T.; Wang, W.; Duan, S.-H.; Huang, Y.; Qi, L.-K. Evaluation of Fatigue Damage of Composite Bridges Caused by Congested Vehicle Idle Vibration Based on Energy Approach. J. Highw. Transp. 2021, 34, 80–92. [Google Scholar]
- Xu, W.; Li, Y.; Jia, K.; Wang, Q. Performance of helical strakes in suppressing the FIV fatigue damage of two long flexible cylinders in a tandem configuration. Int. J. Ocean Eng. 2021, 239, 109836. [Google Scholar] [CrossRef]
- Shogo, K.; Hiroshi, O.; Ryo, S. Fluctuations in Stress Amplitude Ratio due to Fatigue Cracks Occurrence and Progress in Steel Structures. Zair./J. Soc. Mater. Sci. Jpn. 2022, 71, 281–288. [Google Scholar]
- Huang, Y.; Xie, Q.; Wang, X. Research on Path Planning for Reducing Vibration Fatigue of Precision Equipment Transportation. J. Comput. Inf. Sci. Eng. 2022, 22, 11–26. [Google Scholar] [CrossRef]
- Papadopoulos, I.V. A high-cycle fatigue criterion applied in biaxial and triaxial out-of-phase stress conditions. Fatigue Fract. Eng. Mater. Struct. 1995, 18, 79–91. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Hou, X.; Wang, J.; Qiu, B. Failure Analysis and Improvement of High Voltage Cable of Electric Vehicle Based on Pseudo Damage Equivalence. J. Lect. Notes Electr. Eng. 2022, 769, 467–480. [Google Scholar]
- Xin, Y.; Dong, R. Comfort analysis of crane hoistman based on nonlinear biodynamics coupled with crane-rail system model. J. Mech. Sci. Technol. 2022, 36, 55–75. [Google Scholar] [CrossRef]
- Wang, Y.; Serra, R.; Argoul, E.P. Based on the virtual experiment study of the impact of load sequence on the calculation process of random vibration fatigue damage. J. Procedia Struct. Integr. 2019, 19, 682–687. [Google Scholar] [CrossRef]
- Macek, W.; Macha, E. The Control System Based on FPGA Technology for Fatigue Test Stand Mzgs-100 Pl. Arch. Mech. Eng. 2015, 6, 85–99. [Google Scholar] [CrossRef][Green Version]
- Macek, W.; Owsiński, R.; Trembacz, J.; Branco, R. Three-dimensional fractographic analysis of total fracture areas in 6082 aluminium alloy specimens under fatigue bending with controlled damage degree. Mech. Mater. 2020, 147, 103410. [Google Scholar] [CrossRef]
- Concli, F.; Maccioni, L.; Fraccaroli, L.; Bonaiti, L. Early Crack Propagation in Single Tooth Bending Fatigue: Combination of Finite Element Analysis and Critical Planes Fatigue Criteria. Metals 2021, 11, 1871. [Google Scholar] [CrossRef]
- Aykan, M.; Celik, M. Vibration fatigue analysis and multi-axial effect in testing of aerospace structures. Mech. Syst. Signal Process. 2009, 23, 897–907. [Google Scholar] [CrossRef]
- Prasad, S.R.; Sekhar, A.S. Life estimation of shafts using vibration based fatigue analysis. J. Mech. Sci. Technol. 2018, 32, 4071–4078. [Google Scholar] [CrossRef]
- Hase, A. Early Detection and Identification of Fatigue Damage in Thrust Ball Bearings by an Acoustic Emission Technique. Lubricants 2020, 8, 37. [Google Scholar] [CrossRef]
- Li, F.; Wu, H.; Wu, P. Vibration fatigue dynamic stress simulation under non-stationary state. Mech. Syst. Signal Process. 2020, 146, 107006. [Google Scholar] [CrossRef]
Description | Unit | Value |
---|---|---|
Working diameter | mm | 6.98–7.02 |
Working length | mm | 90 |
Density | kg/m3 | 2.8 × 103 |
Description | Unit | Value |
---|---|---|
Elastic modulus | Gpa | 70 |
Ultimate tensile strength | MPa | 534 |
Yield strength | MPa | 475 |
Poisson | - | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, Y.; Xie, L.; Zhang, H. Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050. Materials 2022, 15, 7555. https://doi.org/10.3390/ma15217555
Teng Y, Xie L, Zhang H. Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050. Materials. 2022; 15(21):7555. https://doi.org/10.3390/ma15217555
Chicago/Turabian StyleTeng, Yunnan, Liyang Xie, and Hongyuan Zhang. 2022. "Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050" Materials 15, no. 21: 7555. https://doi.org/10.3390/ma15217555
APA StyleTeng, Y., Xie, L., & Zhang, H. (2022). Experimental Study on Vibration Fatigue Behavior of Aircraft Aluminum Alloy 7050. Materials, 15(21), 7555. https://doi.org/10.3390/ma15217555