Synthesis of Tantalum Carbide Using Purified Hexane by Titanium Powder
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Najafi, A.; Golestani-Fard, F.; Rezaie, H.R.; Saeb, S.P. Sol-Gel synthesis and characterization of SiC–B4C nano powder. Ceram. Int. 2021, 47, 6376–6387. [Google Scholar] [CrossRef]
- Najafi, A.; Sharifi, F.; Mesgari-Abbasi, S.; Khalaj, G. Influence of pH and temperature parameters on the sol-gel synthesis process of meso porous ZrC nanopowder. Ceram. Int. 2022, 48, 26725–26731. [Google Scholar] [CrossRef]
- Emeléus, H.J.; Sharpe, A.G. Advances in Inorganic Chemistry and Radiochemistry; Academic Press: Cambridge, CA, USA, 1967. [Google Scholar]
- Sun, W.; Kuang, X.; Liang, H.; Xia, X.; Zhang, Z.; Lu, C.; Hermann, A. Mechanical properties of tantalum carbide from high-pressure/high-temperature synthesis and first-principles calculations. Phys. Chem. Chem. Phys. 2020, 22, 5018–5023. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Dong, H.; Hojamberdiev, M.; Yi, D.; Yang, Y.; Bao, H.; Li, H.; Li, H.; Mao, D.; Meng, L. Improving the mechanical properties of tantalum carbide particle-reinforced iron-based composite by varying the TaC contents. J. Alloys Compd. 2017, 726, 896–905. [Google Scholar] [CrossRef]
- Cardonne, S.; Kumar, P.; Michaluk, C.; Schwartz, H. Tantalum and its alloys. Int. J. Refract. Hard Met. 1995, 13, 187–194. [Google Scholar] [CrossRef]
- Zhang, X.; Hilmas, G.E.; Fahrenholtz, W.G. Densification and mechanical properties of TaC-based ceramics. Mater. Sci. Eng. A 2009, 501, 37–43. [Google Scholar] [CrossRef]
- Agrawal, D. 9-Microwave sintering of ceramics, composites and metal powders. In Sintering of Advanced Materials; Fang, Z.Z., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 222–248. [Google Scholar]
- Zou, B.; Zhou, H.; Huang, C.; Xu, K.; Wang, J. Tool damage and machined-surface quality using hot-pressed sintering Ti (C7N3)/WC/TaC cermet cutting inserts for high-speed turning stainless steels. J. Adv. Manuf. Technol. 2015, 79, 197–210. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, J.; Guo, Z.; Wan, W.; Tang, L.; Zhong, H.; Zhou, W.; Wang, B. Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature. Int. J. Refract. Hard Met. 2015, 48, 134–140. [Google Scholar] [CrossRef]
- Yeh, C.; Liu, E. Combustion synthesis of tantalum carbides TaC and Ta2C. J. Alloys Compd. 2006, 415, 66–72. [Google Scholar] [CrossRef]
- Yeh, C.L.; Liu, E.W. Preparation of tantalum carbonitride by self-propagating high-temperature synthesis of Ta-C system in nitrogen. Ceram. Int. 2006, 32, 653–658. [Google Scholar] [CrossRef]
- Musa, C.; Licheri, R.; Montinaro, S.; Orru, R.; Cao, G. Tantalum carbide products from chemically-activated combustion synthesis reactions. Ceram. Int. 2017, 43, 12844–12850. [Google Scholar] [CrossRef]
- Hörz, G.; Lindenmaier, K. The kinetics and mechanisms of the absorption of carbon by niobium and tantalum in a methane or acetylene stream. J. Less Common Met. 1974, 35, 85–95. [Google Scholar] [CrossRef]
- Hörz, G.; Kanbach, H.; Vetter, H. The influence of surface segregation of oxygen or nitrogen on the decompositio of hydrocarbons on transition metals. Mater. Sci. Eng. 1980, 42, 145–153. [Google Scholar] [CrossRef]
- Matoba, T.; Nakase, E.; Sakaba, A. On Carburization of Tantalum Oxide. J. Jpn. Soc. Powder Metall. 1965, 12, 69–77. [Google Scholar] [CrossRef]
- Zhao, Z.; Hui, P.; Liu, F.; Wang, X.; Li, B.; Xu, Y.; Zhong, L.; Zhao, M. Fabrication of TaC coating on tantalum by interstitial carburization. J. Alloys Compd. 2019, 790, 189–196. [Google Scholar] [CrossRef]
- Bryan, P.F. Removal of propylene from fuel-grade propane. Sep. Purif. Rev. 2004, 33, 157–182. [Google Scholar] [CrossRef]
- Arafia, M.; Soliman, A.; Ossama, A. A simulation study of n-butane absorption refrigeration system using commercial hydrocarbons as absorbents. Int. J. Refrig. 2020, 112, 110–124. [Google Scholar] [CrossRef]
- Koós, Á.; Oszkó, A.; Solymosi, F. A photoelectron spectroscopic study of the carburization of MoO3. Appl. Surf. Sci. 2007, 253, 3022–3028. [Google Scholar] [CrossRef]
- Lee, D.-W. Method and Apparatus for Preparing Tantalum Carbide Powder. Korea Patent 10-2018-0055549, 8 October 2019. Available online: https://kpat.kipris.or.kr/ (accessed on 1 September 2022).
- Hwang, S.-M.; Park, S.-J.; Wang, J.-P.; Park, Y.-H.; Lee, D.-W. Preparation of tantalum metal powder by magnesium gas reduction of tantalum pentoxide with different initial particle size. Int. J. Refract. Hard Met. 2021, 100, 105620. [Google Scholar] [CrossRef]
- Graziano, G. On the solubility of oxygen and xenon in n-hexane and n-perfluorohexane at room temperature. J. Therm. Anal. Calorim. 2017, 130, 497–501. [Google Scholar] [CrossRef]
- Solubilities of Gases—Chemistry LibreTexts. 2022. Available online: https://chem.libretexts.org (accessed on 1 September 2022).
- Anbarasi, C.M. Corrosion behaviour of carbon steel in hexane. Conf. Proc. Mater. Sci. 2011. [Google Scholar]
- Yan, X.; Wang, Y.; Du, Q.; Jiang, W.; Shang, F.; Li, R. Research progress on factors affecting oxygen corrosion and countermeasures in oilfield development. In Proceedings of the 2nd International Conference on Biofilms (ChinaBiofilms 2019), Guangzhou, China, 10–13 October 2019; Volume 131, p. 01031. [Google Scholar]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys (Revised Reprint); CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Baltatu, I.; Sandu, A.V.; Vlad, M.D.; Spataru, M.C.; Vizureanu, P.; Baltatu, M.S. Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloys. Micromachines 2022, 13, 430. [Google Scholar] [CrossRef] [PubMed]
- Spataru, M.C.; Butnaru, M.; Sandu, A.V.; Vulpe, V.; Vlad, M.D.; Baltatu, M.S.; Geanta, V.; Voiculescu, I.; Vizureanu, P.; Solcan, C. In-depth assessment of new Ti-based biocompatible materials. Mater. Chem. Phys. 2021, 258, 123959. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Xiao, Z.; Reng, X. Study of adsorption of hydrogen on Al, Cu, Mg, Ti surfaces in Al alloy melt via first principles calculation. Metals 2017, 7, 21. [Google Scholar] [CrossRef]
- Patra, B.; Samantray, B. Engineering Chemistry I (for BPUT); Pearson Education India: Delhi, India, 2010. [Google Scholar]
- Yuster, L.C. Environment Abstracts Annual 1988; ERIC: New York, NY, USA, 1989; Volume 18. [Google Scholar]
- Molleman, B.; Hiemstra, T. Size and shape dependency of the surface energy of metallic nanoparticles: Unifying the atomic and thermodynamic approaches. Phys. Chem. Chem. Phys. 2018, 20, 20575–20587. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Feng, X. Polyhedral Shapes of CeO2 Nanoparticles. J. Phys. Chem. B 2003, 107, 13563–13566. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A. Cellular response to nanobiomaterials. In Handbook of Biomaterials Biocompatibility; Mozafari, M., Ed.; Woodhead Publishing: Sawston, UK, 2020; Chapter 21; pp. 473–504. [Google Scholar]
- Naboychenko, S.S.; Murashova, I.B.; Neikov, O.D. Production of Refractory Metal Powders. In Handbook of Non-Ferrous Metal Powders; Neikov, O.D., Naboychenko, S.S., Murashova, I.V., Gopienko, V.G., Frishberg, I.V., Lotsko, D.V., Eds.; Elsevier: Oxford, UK, 2009; Chapter 21; pp. 436–484. [Google Scholar]
Material | T, K | Δm, g | 1/T, 1/K | Δm/3 h = k |
---|---|---|---|---|
Titanium | 293 | 0.081 | 3.413 × 10−3 | 0.0269 |
308 | 0.083 | 3.247 × 10−3 | 0.0277 | |
323 | 0.086 | 3.096 × 10−3 | 0.0285 | |
Copper | 293 | 0.005 | 3.413 × 10−3 | 0.0018 |
308 | 0.121 | 3.247 × 10−3 | 0.0404 | |
323 | 0.167 | 3.096 × 10−3 | 0.0557 | |
Aluminum | 293 | 0.000 | 3.413 × 10−3 | 0.0001 |
308 | 0.065 | 3.247 × 10−3 | 0.0217 | |
323 | 0.086 | 3.096 × 10−3 | 0.0285 |
No. | Purification by Ti Powder | T, K | Time, h | C, wt.% | O, wt.% |
---|---|---|---|---|---|
1 | X | 1273 | 2 | 6.22 | 7.66 |
2 | O | 1273 | 2 | 6.23 | 1.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-M.; Hong, J.-W.; Park, Y.-H.; Lee, D.-W. Synthesis of Tantalum Carbide Using Purified Hexane by Titanium Powder. Materials 2022, 15, 7510. https://doi.org/10.3390/ma15217510
Hwang S-M, Hong J-W, Park Y-H, Lee D-W. Synthesis of Tantalum Carbide Using Purified Hexane by Titanium Powder. Materials. 2022; 15(21):7510. https://doi.org/10.3390/ma15217510
Chicago/Turabian StyleHwang, Seon-Min, Ji-Won Hong, Yong-Ho Park, and Dong-Won Lee. 2022. "Synthesis of Tantalum Carbide Using Purified Hexane by Titanium Powder" Materials 15, no. 21: 7510. https://doi.org/10.3390/ma15217510
APA StyleHwang, S.-M., Hong, J.-W., Park, Y.-H., & Lee, D.-W. (2022). Synthesis of Tantalum Carbide Using Purified Hexane by Titanium Powder. Materials, 15(21), 7510. https://doi.org/10.3390/ma15217510