TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.; Zhong, Z.; Wang, D.; Wang, A.W.U.; Lieber, C.M. High Performance Silicon Nanowire Field Effect Transistors. Nano Lett. 2003, 3, 149–152. [Google Scholar] [CrossRef]
- Chau, M.; Englander, O.; Lin, L. Silicon nanowire-based nanoactuator. In Proceedings of the IEEE-NANO Third IEEE Conference on Nanotechnology, San Francisco, CA, USA, 12–14 August 2003; pp. 879–880. [Google Scholar]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef]
- Tian, B.; Zheng, X.; Kempa, T.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C.M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Hsin, C.-L.; Mai, W.; Gu, Y.; Gao, Y.; Huang, C.-T.; Liu, Y.; Chen, L.-J.; Wang, Z.-L. Elastic Properties and Buckling of Silicon Nanowires. Adv. Mater. 2008, 20, 3919–3923. [Google Scholar] [CrossRef]
- San Paulo, Á.; Arellano, N.; Plaza, J.A.; He, R.; Carraro, C.; Maboudian, R.; Howe, R.T.; Bokor, A.J.; Yang, P. Suspended Mechanical Structures Based on Elastic Silicon Nanowire Arrays. Nano Lett. 2007, 7, 1100–1104. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Kou, L.; Lang, X.; Xia, J.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z.; Zhang, X.; et al. Electronic and Mechanical Coupling in Bent ZnO Nanowires. Adv. Mater. 2010, 21, 4937–4941. [Google Scholar] [CrossRef]
- In, Y.; Wang, X.; Wang, Z.L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813. [Google Scholar] [CrossRef]
- Lin, X.; He, X.B.; Yang, T.Z.; Guo, W.; Shi, D.X.; Gao, H.-J.; Ma, D.D.D.; Lee, S.T.; Liu, F.; Xie, X.C. Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowire. Appl. Phys. Lett. 2006, 89, 043103. [Google Scholar] [CrossRef]
- Zheng, K.; Han, X.; Wang, L.; Zhang, Y.; Yue, Y.; Qin, Y.; Zhang, X.; Zhang, Z. Atomic Mechanisms Governing the Elastic Limit and the Incipient Plasticity of Bending Si Nanowires. Nano Lett. 2009, 9, 2471–2476. [Google Scholar] [CrossRef]
- Han, X.D.; Zheng, K.; Zhang, Y.F.; Zhang, X.N.; Zhang, Z.; Wang, Z.L. Low-Temperature In Situ Large-Strain Plasticity of Silicon Nanowires. Adv. Mater. 2007, 19, 2112–2118. [Google Scholar] [CrossRef]
- Efremov, M.D.; Bolotov, V.; Volodin, V.; Fedina, L.I.; Lipatnikov, E.A. Excimer laser and rapid thermal annealing stimulation of solid-phase nucleation and crystallization in amorphous silicon films on glass substrates. J. Physics: Condens. Matter 1996, 8, 273–286. [Google Scholar] [CrossRef]
- Tang, D.-M.; Ren, C.-L.; Wang, M.-S.; Wei, X.; Kawamoto, N.; Liu, C.; Bando, Y.; Mitome, M.; Fukata, N.; Golberg, D. Mechanical Properties of Si Nanowires as Revealed by in Situ Transmission Electron Microscopy and Molecular Dynamics Simulations. Nano Lett. 2012, 12, 1898–1904. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, K.; Zhang, Z.; Han, X. Direct Atomic-Scale Imaging about the Mechanisms of Ultralarge Bent Straining in Si Nanowires. Nano Lett. 2011, 11, 2382–2385. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhong, L.; Fan, F.; Wang, C.; Zhu, T.; Mao, S.X. In situ observation of shear-driven amorphization in silicon crystals. Nat. Nanotechnol. 2016, 11, 866–871. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Wang, L.-Y.; Zhuang, Z.; Ma, E.; Li, J.; Shan, Z.-W. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon. NPG Asia Mater. 2016, 8, e291. [Google Scholar] [CrossRef] [Green Version]
- Vincent, L.; Patriarche, G.; Hallais, G.; Renard, C.; Gardès, C.; Troadec, D.; Bouchier, D. Novel Heterostructured Ge Nanowires Based on Polytype Transformation. Nano Lett. 2014, 14, 4828–4836. [Google Scholar] [CrossRef] [PubMed]
- Vincent, L.; Djomani, D.; Fakfakh, M.; Renard, C.; Belier, B.; Bouchier, D.; Patriarche, G. Shear-driven phase transformation in silicon nanowires. Nanotechnology 2018, 29, 125601. [Google Scholar] [CrossRef]
- Lewis, R.B.; Corfdir, P.; Küpers, H.; Flissikowski, T.; Brandt, O.; Geelhaar, L. Nanowires Bending over Backward from Strain Partitioning in Asymmetric Core–Shell Heterostructures. Nano Lett. 2018, 18, 2343–2350. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, J.-I.; Xu, S.; Lin, S.; Fang, H.; Zhang, S.; Ding, Y.; Snyder, R.L.; Wang, Z.L. A General Approach for Fabricating Arc-Shaped Composite Nanowire Arrays by Pulsed Laser Deposition. Adv. Funct. Mater. 2010, 20, 703–707. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, J.-I.; Peng, Z.; Fang, H.; Zhang, S.; Dong, S.; Snyder, R.L.; Wang, Z.L. Tuning the Shape and Strain in Micro/Nanowires by a Sideways Physical Deposition Process. J. Phys. Chem. C 2010, 114, 21277–21280. [Google Scholar] [CrossRef]
- Hilse, M.; Takagaki, Y.; Herfort, J.; Ramsteiner, M.; Herrmann, C.; Breuer, S.; Geelhaar, L.; Riechert, H. Ferromagnet-semiconductor nanowire coaxial heterostructures grown by molecular-beam epitaxy. Appl. Phys. Lett. 2009, 95, 133126. [Google Scholar] [CrossRef]
- Xu, Y.K.; Li, L.B.; Zang, Y.; Hu, J.C.; Li, Z.B.; Chen, H.; Zhang, G.Q.; Xia, C.J.; Cho, J.H. Forward bending of silicon nanowires induced by strain distribution in asymmetric growth. Mater. Lett. 2021, 297, 129929. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Fan, R.; He, A.R.; Yang, P. Controlled Growth of Si Nanowire Arrays for Device Integration. Nano Lett. 2005, 5, 457–460. [Google Scholar] [CrossRef]
- Zhigunov, D.M.; Kamaev, G.; Kashkarov, P.K.; Volodin, V.A. On Raman scattering cross section ratio of crystalline and microcrystalline to amorphous silicon. Appl. Phys. Lett. 2018, 113, 023101. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Kwon, J.-D.; Kim, D.-H.; Nam, K.-S.; Jeong, Y.; Kwon, S.-H.; Park, S.-G. Structural characterization of wavelength-dependent Raman scattering and laser-induced crystallization of silicon thin films. Thin Solid Films 2013, 542, 388–392. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zang, Y.; Li, L.; Hu, J.; Li, L.; Li, Z.; Li, Z.; Feng, S.; Zhang, G.; Xia, C.; Pu, H. TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires. Materials 2022, 15, 7077. https://doi.org/10.3390/ma15207077
Zang Y, Li L, Hu J, Li L, Li Z, Li Z, Feng S, Zhang G, Xia C, Pu H. TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires. Materials. 2022; 15(20):7077. https://doi.org/10.3390/ma15207077
Chicago/Turabian StyleZang, Yuan, Lianbi Li, Jichao Hu, Lei Li, Zelong Li, Zebin Li, Song Feng, Guoqing Zhang, Caijuan Xia, and Hongbin Pu. 2022. "TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires" Materials 15, no. 20: 7077. https://doi.org/10.3390/ma15207077
APA StyleZang, Y., Li, L., Hu, J., Li, L., Li, Z., Li, Z., Feng, S., Zhang, G., Xia, C., & Pu, H. (2022). TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires. Materials, 15(20), 7077. https://doi.org/10.3390/ma15207077