Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shirane, G.; Suzuki, K. Crystal structure of Pb(Zr-Ti)O3. J. Phys. Soc. Jpn. 1952, 7, 333. [Google Scholar] [CrossRef]
- Jaffe, B.; Roth, R.S.; Marzullo, S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 1954, 25, 809–810. [Google Scholar] [CrossRef]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics, 1st ed.; Academic Press: London, UK, 1971; pp. 7–15. [Google Scholar] [CrossRef]
- Kimura, M.; Ando, A.; Sakabe, Y. Lead Zirconate Titanate-Based Piezo-Ceramics. In Advanced Piezoelectric Materials, 1st ed.; Uchino, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 89–110. [Google Scholar] [CrossRef]
- Noheda, B.; Cox, D.E.; Shirane, G.; Gonzalo, J.A.; Cross, L.E.; Park, S.E. A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 1999, 74, 2059–2061. [Google Scholar] [CrossRef]
- Guo, R.; Cross, L.E.; Park, S.-E.; Noheda, B.; Cox, D.E.; Shirane, G. Origin of the high piezoelectric response in PbZr1-xTixO3. Phys. Rev. Lett. 2000, 84, 5423–5426. [Google Scholar] [CrossRef]
- Zhang, N.; Yokota, H.; Glazer, A.M.; Ren, Z.; Keen, D.A.; Keeble, D.S.; Thomas, P.A.; Ye, Z.G. The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Comm. 2014, 5, 5231–5240. [Google Scholar] [CrossRef]
- Hall, D.A. Review Nonlinearity in piezoelectric ceramics. J. Mater. Sci. 2001, 36, 4575–4601. [Google Scholar] [CrossRef]
- Schönau, K.A.; Schmitt, L.A.; Knapp, M.; Fuess, H.; Eichel, R.A.; Kungl, H.; Hoffmann, M.J. Nanodomain structure of Pb[Zr1-xTix]O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys. Rev. B 2007, 75, 184117. [Google Scholar] [CrossRef]
- Bovtun, V.; Veljko, S.; Kamba, S.; Petzelt, J.; Vakhrushev, S.; Yakymenko, Y.; Brinkman, K.; Setter, N. Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: Single crystals, ceramics, and thin films. J. Eur. Ceram. Soc. 2006, 26, 2867–2875. [Google Scholar] [CrossRef]
- Uchino, K. Relaxor Ferroelectric-Based Ceramics. In Advanced Piezoelectric Materials, 1st ed.; Uchino, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 111–129. [Google Scholar] [CrossRef]
- Takenaka, T. Lead-Free Piezo-Ceramics. In Advanced Piezoelectric Materials, 1st ed.; Uchino, K., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 130–170. [Google Scholar] [CrossRef]
- Wang, W.; Tang, X.G.; Jiang, Y.P.; Liu, Q.X.; Li, W.H.; Guo, X.B.; Tang, Z.H. Modified relaxor ferroelectrics in BiFeO3-(Ba,Sr)TiO3-BiScO3 ceramics for energy storage applications. Sustain. Mater. Technol. 2002, 32, e00428. [Google Scholar] [CrossRef]
- Djahmoum, M.; El Kechai, O.; Marchet, P. Elaboration and characterization of materials from the LaMnO3-BiMnO3 binary system. Phys. Status Solidi A 2020, 217, 1900814. [Google Scholar] [CrossRef]
- Selvamani, R.; Singh, G.; Sathe, V.; Tiwari, V.S.; Gupta, P.K. Dielectric, structural and Raman studies on (Na0.5Bi0.5TiO3)(1-x)(BiCrO3)x ceramic. J. Phys. Condens. Matter 2011, 23, 055901. [Google Scholar] [CrossRef]
- Azuma, M.; Niitaka, S.; Hayashi, N.; Oka, K.; Takano, M.; Funakubo, H.; Shimakawa, Y. Rhombohedral–tetragonal phase boundary with high Curie temperature in (1-x)BiCoO3–xBiFeO3 solid solution. Jpn. J. Appl. Phys. 2008, 47, 7579–7581. [Google Scholar] [CrossRef]
- Oka, K.; Koyama, T.; Ozaaki, T.; Mori, S.; Shimakawa, Y.; Azuma, M. Polarization rotation in the monoclinic perovskite BiCo1−xFexO3. Angew. Chem. 2012, 124, 8101–8104. [Google Scholar] [CrossRef]
- Pan, Z.; Chen, J.; Yu, R.; Yamamoto, H.; Rong, Y.; Hu, L.; Li, Q.; Lin, K.; You, L.; Zhao, K.; et al. Giant polarization and high temperature monoclinic phase in a lead-free perovskite of Bi(Zn0.5Ti0.5)O3-BiFeO3. Inorg. Chem. 2016, 55, 9513–9516. [Google Scholar] [CrossRef]
- Pan, Z.; Nishikubo, T.; Sakai, Y.; Yamamoto, T.; Kawaguchi, S.; Azuma, M. Observation of stabilized monoclinic phase as a “bridge” at the morphotropic phase boundary between tetragonal perovskite PbVO3 and rhombohedral BiFeO3. Chem. Mater. 2020, 32, 3615–3620. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, M.H.; Nishikubo, T.; Sakai, Y.; Yamamoto, H.; Hojo, H.; Fukuda, M.; Hu, L.; Ishizaki, H.; Kaneko, S.; et al. Polarization rotation at morphotropic phase boundary in new lead-free Na1/2Bi1/2V1–xTixO3 piezoceramics. ACS Appl. Mater. Interfaces 2021, 13, 5208–5215. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Vyshatko, N.P.; Lopes, A.B.; Olekhnovich, N.M.; Pushkarev, A.V.; Maroz, I.I.; Radyush, Y.V. Crystal structure of metastable perovskite Bi(Mg1/2Ti1/2)O3: Bi-based structural analogue of antiferroelectric PbZrO3. Chem. Mater. 2006, 18, 5104–5110. [Google Scholar] [CrossRef]
- Suchomel, M.R.; Fogg, A.M.; Allix, M.; Niu, H.; Claridge, J.B.; Rosseinsky, M.J. Bi2ZnTiO6: A lead-free closed-shell polar perovskite with a calculated ionic polarization of 150 μC.cm−2. Chem. Mater. 2006, 18, 4987–4989. [Google Scholar] [CrossRef]
- Salak, A.N.; Shvartsman, V.V.; Cardoso, J.P.; Pushkarev, A.V.; Radyush, Y.V.; Olekhnovich, N.M.; Khalyavin, D.D.; Vieira, J.M.; Čižmár, E.; Feher, A. The orthorhombic-tetragonal morphotropic phase boundary in high-pressure synthesized BiMg0.5Ti0.5O3-BiZn0.5Ti0.5O3 perovskite solid solutions. J. Phys. Chem. Solids 2022, 161, 110392. [Google Scholar] [CrossRef]
- Khalyavin, D.D.; Salak, A.N.; Fertman, E.L.; Kotlyar, O.V.; Eardley, E.; Olekhnovich, N.M.; Pushkarev, A.V.; Radyush, Y.V.; Fedorchenko, A.V.; Desnenko, V.A.; et al. The phenomenon of conversion polymorphism in Bi-containing metastable perovskites. Chem. Commun. 2019, 55, 4683–4686. [Google Scholar] [CrossRef]
- Pushkarev, A.V.; Olekhnovich, N.M.; Radyush, Y.V. High-pressure Bi(Mg1−xZnx)1/2Ti1/2O3 perovskite solid solutions. Inorg. Mater. 2011, 47, 1116–1119. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Oh, S.J.; Shin, Y.; Tran, T.T.; Lee, D.W.; Yoon, A.; Shiv, H.P.; Ok, K.M. Structure–property relationships in solid solutions of noncentrosymmetric Aurivillius phases, Bi4–xLaxTi3O12 (x = 0–0.75). Inorg. Chem. 2012, 51, 10402–10407. [Google Scholar] [CrossRef]
- Salak, A.N.; Khalyavin, D.D.; Mantas, P.Q.; Senos, A.M.R.; Ferreira, V.M. Structure-dependent microwave dielectric properties of (1−x)La(Mg1/2Ti1/2)O3–xLa2/3TiO3 ceramics. J. Appl. Phys. 2005, 98, 034101. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Kholkin, A.L. Nanoscale Investigation of Polycrystalline Ferroelectric Materials via Piezoresponse Force Microscopy. In Multifunctional Polycrystalline Ferroelectric Materials: Processing and Properties; Pardo, L., Ricote, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 409–468. [Google Scholar] [CrossRef]
The Composition Range | The Thermal Stability Limit, K |
---|---|
x ≤ 0.20 | 970 |
0.20 < x ≤ 0.65 | 870 |
x > 0.65 | 820 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, J.P.V.; Shvartsman, V.V.; Pushkarev, A.V.; Radyush, Y.V.; Olekhnovich, N.M.; Khalyavin, D.D.; Čižmár, E.; Feher, A.; Salak, A.N. Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System. Materials 2022, 15, 6998. https://doi.org/10.3390/ma15196998
Cardoso JPV, Shvartsman VV, Pushkarev AV, Radyush YV, Olekhnovich NM, Khalyavin DD, Čižmár E, Feher A, Salak AN. Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System. Materials. 2022; 15(19):6998. https://doi.org/10.3390/ma15196998
Chicago/Turabian StyleCardoso, João Pedro V., Vladimir V. Shvartsman, Anatoli V. Pushkarev, Yuriy V. Radyush, Nikolai M. Olekhnovich, Dmitry D. Khalyavin, Erik Čižmár, Alexander Feher, and Andrei N. Salak. 2022. "Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System" Materials 15, no. 19: 6998. https://doi.org/10.3390/ma15196998
APA StyleCardoso, J. P. V., Shvartsman, V. V., Pushkarev, A. V., Radyush, Y. V., Olekhnovich, N. M., Khalyavin, D. D., Čižmár, E., Feher, A., & Salak, A. N. (2022). Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System. Materials, 15(19), 6998. https://doi.org/10.3390/ma15196998