Comparing the Effect of Thermal-Oxidation and Photo-Oxidation of Asphalt Mixtures on the Rheological and Chemical Properties of Extracted Bituminous Binder
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Work
2.2.1. Aging Procedures
2.2.2. Cutting Samples and Extractions
2.2.3. Extracted Bitumen Testing
- Response to DSR;
- FT-IR fingerprinting;
- SARA fraction analysis.
3. Results and Discussion
3.1. Dynamic Shear Rheometer Results
3.2. SARA Analysis Results
3.3. FT-IR Spectroscopy Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, G. State of the Art: Asphalt for Airport Pavement Surfacing. Int. J. Pavement Res. Technol. 2018, 11, 77–98. [Google Scholar] [CrossRef]
- Sirin, O.; Paul, D.K.; Kassem, E. State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives. Adv. Civ. Eng. 2018, 2018, 3428961. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Artificial Aging of Polymer Modified Bitumens. J. Appl. Polym. Sci. 2000, 76, 1811–1824. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, A.N.; Shen, J. Effects of Various Long-Term Aging Procedures on the Rheological Properties of Laboratory Prepared Rubberized Asphalt Binders. J. Test. Eval. 2009, 37, 329–336. [Google Scholar]
- Cortizo, M.S.; Larsen, D.O.; Bianchetto, H.; Alessandrini, J.L. Effect of The Thermal Degradation of SBS Copolymers During the Ageing of Modified Asphalts. Polym. Degrad. Stab. 2004, 86, 275–282. [Google Scholar] [CrossRef]
- Wu, S.; Pang, L.; Liu, G.; Zhu, J. Laboratory Study on Ultraviolet Radiation Aging of Bitumen. J. Mater. Civ. Eng. 2010, 22, 767–772. [Google Scholar] [CrossRef]
- Feng, Z.G.; Yu, J.Y.; Liang, Y.S. The Relationship Between Colloidal Chemistry and Ageing Properties of Bitumen. Pet. Sci. Technol. 2012, 30, 1453–1460. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Z.; Zhou, B.; Yu, J. A Study on Photo-thermal Coupled Aging Kinetics of Bitumen. J. Test. Evaluation 2012, 40, 724–727. [Google Scholar] [CrossRef]
- ASTM D2872-19; Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D6521-19a; Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). ASTM International: West Conshohocken, PA, USA, 2019.
- Zeng, W.; Wu, S.; Pang, L.; Chen, H.; Hu, J.; Sun, Y.; Chen, Z. Research on Ultra Violet (UV) aging depth of asphalts. Constr. Build. Mater. 2018, 160, 620–627. [Google Scholar] [CrossRef]
- Menapace, I.; Masad, E. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester. J. Microsc. 2016, 263, 341–356. [Google Scholar] [CrossRef]
- Menapace, I.; Yiming, W.; Masad, E. Chemical analysis of surface and bulk of asphalt binders aged with accelerated weathering tester and standard aging methods. Fuel 2017, 202, 366–379. [Google Scholar] [CrossRef]
- Woo, W.J.; Prapaitrakul, N.; Chowdhury, A.; Glover, C.J. Asphalt Binder Oxidative Hardening in Minnesota and Texas Pavements as a Function of Depth Below the Surface. In Proceedings of the Transportation Research Board 87th Annual Meeting, Washington, DC, USA, 13–17 January 2008. [Google Scholar]
- Al-Azri, N.A.; Jung, S.; Lunsford, K.M.; Ferry, A.; Bullin, J.; Davison, R.R.; Glover, C.J. Binder Oxidative Aging in Texas Pavements: Hardening Rates, Hardening Susceptibilities, and Impact of Pavement Depth. Transp. Res. Rec. J. Transp. Res. Board 2006, 1962, 12–20. [Google Scholar] [CrossRef]
- Woo, W.J.; Chowdhury, A.; Glover, C.J. Field Aging of Unmodified Asphalt Binder in Three Texas Long-Term Performance Pavements. Transp. Res. Rec. J. Transp. Res. Board 2008, 2051, 15–22. [Google Scholar] [CrossRef]
- Qin, Q.; Schabron, J.F.; Boysen, R.B.; Farrar, M.J. Field aging effect on chemistry and rheology of asphalt binders and rheological predictions for field aging. Fuel 2014, 121, 86–94. [Google Scholar] [CrossRef]
- Kuang, D.; Yu, J.; Feng, Z.; Li, R.; Chen, H.; Guan, Y.; Zhang, Z. Performance evaluation and preventive measures for aging of different bitumens. Constr. Build. Mater. 2014, 66, 209–213. [Google Scholar] [CrossRef]
- Hu, J.; Wu, S.; Liu, Q.; Hernández, M.I.G.; Zeng, W. Effect of ultraviolet radiation on bitumen by different ageing procedures. Constr. Build. Mater. 2018, 163, 73–79. [Google Scholar] [CrossRef]
- Wu, S.; Han, J.; Pang, L.; Yu, M.; Wang, T. Rheological properties for aged bitumen containing ultraviolate light resistant materials. Constr. Build. Mater. 2012, 33, 133–138. [Google Scholar] [CrossRef]
- Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012, 97, 678–684. [Google Scholar] [CrossRef]
- Sun, X.; Qin, X.; Liu, Z.; Yin, Y.; Zou, C.; Jiang, S. New preparation method of bitumen samples for UV aging behavior investigation. Constr. Build. Mater. 2020, 233, 117278. [Google Scholar] [CrossRef]
- National Academies of Sciences. Engineering, and Medicin, Field Verification of Proposed Changes to the AASHTO R 30 Procedures for Laboratory Conditioning of Asphalt Mixtures; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Castorena, C.; Rad, F.Y.; Elwardany, M.; Farrar, M.J.; Glaser, R.R. National Cooperative Highway Research Program Project, NCHRP 09-54 Long-Term Aging of Asphalt Mixtures for Performance Testing and Prediction; Transportation Research Baord: Washinsgton, DC, USA, 2015. [Google Scholar]
- Grilli, A.; Gnisci, M.I.; Bocci, M. Effect of ageing process on bitumen and rejuvenated bitumen. Constr. Build. Mater. 2017, 136, 474–481. [Google Scholar] [CrossRef]
- Abouelsaad, A.; White, G. The Combined Effect of Ultraviolet Irradiation and Temperature on Hot Mix Asphalt Mixture Aging. Sustainability 2022, 14, 5942. [Google Scholar] [CrossRef]
- Yu, J.; Dai, Z.; Shen, J.; Zhu, H.; Shi, P. Aging of asphalt binders from weathered asphalt mixtures compared with a SHRP process. Constr. Build. Mater. 2018, 160, 475–486. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, M.; Wu, S.; Amirkhanian, S. A Long-term Ultraviolet Aging Effect on Rheology of WMA Binders. Int. Jounal Pavement Res. Technol. 2013, 6, 496–504. [Google Scholar] [CrossRef]
- Hagos, E. The Effect of Aging on Binder Properties of Porous Asphalt Concrete. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Austroads, Long-Term Ageing Resistance of Bitumen Using the Pressure Ageing Vessel (PAV) and the Dynamic Shear Rheometer (DSR); Austroads: Sydney, Australia, 2017.
- Al-Sabaeei, A.M.; Mustofa, B.A.; Sutanto, M.H.; Sunarjono, S.; Bala, N. Aging and Rheological Properties of Latex and Crumb Rubber Modified Bitumen Using Dynamic Shear Rheometer. J. Eng. Technol. Sci. 2020, 52, 385–398. [Google Scholar] [CrossRef]
- Farrar, M.J.; Grimes, R.W.; Sui, C.; Planche, J.P.; Huang, S.C.; Turner, T.F.; Glaser, R. Thin Film Oxidative Aging and Low Temperature Performance Grading Using Small Plate Dynamic Shear Rheometer: An Alternative to Standard RTFO, PAV, and BBR. In Proceedings of the 5th Eurasphalt & Eurobitume Congress, Istanbul, Turkey, 13–15 June 2012. [Google Scholar]
- Shameer, P.M.; Nishath, P.M. Advanced Biofuels Applications, Technologies and Environmental Sustainability; Woodhead Publishing Series in Energy: Duxford, UK, 2019. [Google Scholar]
- Hofko, B.; Porot, L.; Cannone, A.F.; Poulikakos, L.; Huber, L.; Lu, X.; Mollenhauer, K.; Grothe, H. FTIR spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Mater. Struct. 2018, 51, 45. [Google Scholar] [CrossRef]
- Sakib, N.; Bhasin, A. Measuring polarity-based distributions (SARA) of bitumen using simplified chromatographic techniques. Int. J. Pavement Eng. 2018, 20, 1371–1384. [Google Scholar] [CrossRef]
- White, G.; Almutairi, H. Laboratory and field performance comparison of dense graded and stone mastic asphalt as a runway surface. Int. J. Pavement Eng. 2020, 23, 937–949. [Google Scholar] [CrossRef]
- White, G. Binder for Airport Asphalt Surfacing. In Proceedings of the 17thAAPA International Flexible Pavements Conference, Melbourne, VIC, Australia, 13–16 August 2017. [Google Scholar]
- ASTM STP 1294; Comparison Between Natural Wathering and Fluorescent UV Exposures: UVA-340 Lamp Test Results, Durability Testing of Non-Metallic Materials. American Society for Testing and Material: West Conshohocken, PA, USA, 1996.
- Li, Y.; Wu, S.; Liu, Q.; Dai, Y.; Li, C.; Li, H.; Nie, S.; Song, W. Aging Degradation of Asphalt Binder by Narrow-Band UV Radiations with a Range of Dominant Wavelengths. Constr. Build. Mater. 2019, 220, 637–650. [Google Scholar] [CrossRef]
- White, G.; Abouelsaad, A. Towards More Realistic Accelerated Laboratory Ageing of Asphalt Samples. In Proceedings of the International Symposium on Frontiers of Road and Airport Engineering, Delft, The Netherlands, 12–14 July 2021. [Google Scholar]
- Mirwald, J.; Werkovits, S.; Camargo, I.; Maschauer, D.; Hofko, B.; Grothe, H. Investigating Bitumen Long-term Ageing in the Laboratory by Spectroscopic Analysis of the SARA Fractions. Constr. Build. Mater. 2020, 258, 119577. [Google Scholar] [CrossRef]
- Zoorob, S.E.; Airey, G.D. An Investigation into the Effect of Composition on Performance of Penetration Grade Road Bitumens, Part 1: SARA Analysis. In Proceedings of the 3rd International SIIV Congress, Nottingham, UK, 22–24 September 2005. [Google Scholar]
- Kleizienė, R.; Panasenkienė, M.; Vaitkus, A. Effect of Aging on Chemical Composition and Rheological Properties of Neat and Modified Bitumen. Materials 2019, 12, 4066. [Google Scholar] [CrossRef]
Property | Units | Test Method | Value |
---|---|---|---|
VMA | % (by volume) | AS/NZS 2891.8 | 14.4 |
VFB | % (by volume) | AS/NZS 2891.8 | 76 |
Air Voids | % (by volume) | AS/NZS 2891.8 | 4.2 |
Binder Content | % (by mass) | AS/NZS 2891.8 | 5.4 |
Binder Type | N/A | Selected by designer | A10E |
Stability | kN | AS/NZS 2891.5 | 13.2 |
Flow | mm | AG:PT/T231 | 3.7 |
Tensile Strength | MPa | AG:PT/T232 | 1036 |
Resilient Modulus | MPa | AS/NZ 2891.13.1 | 1870 |
TSR | % | AG:PT/T232 | 87 |
Property | Units | Test Method | Value |
---|---|---|---|
Softening Point | °C | AG:PT/T131 | 96 |
Torsional Recovery at 25 °C | % | AG:PT/T131 | 66 |
Viscosity at 165 °C | Pa·s | AG:PT/T131 | 0.693 |
Performance Grade | °C (at traffic level) | AASHTO TP 70 | 82 (E) |
Elastic Recovery | % (82 °C, 3.2 kPa) | AASHTO TP 70 | 96 |
Characteristic | Setting |
---|---|
Irradiation | 50 w/m2 |
Irradiance Wavelength Range | 300–400 nm |
Chamber Temperature | 70 °C |
Humidity % | 0% |
Spray | Off. |
Development Tank | Soaking Time | Drying Time/Temperature |
---|---|---|
Hexane | 24 min | 2 min at room temperature |
Toluene | 8.5 min | 2 min at 110 °C 7 min at room temperature |
Dichloromethane/methanol | 2 min | 2 min at 110 °C 5 min at room temperature |
Temperature (°C) | Oven | UV Chamber | ||||
---|---|---|---|---|---|---|
Top | Middle | Ratio | Top | Middle | Ratio | |
30 | 5.69 × 105 | 2.79 × 105 | 2.0 | 1.96 × 106 | 5.08 × 105 | 3.9 |
35 | 2.75× 105 | 1.32 × 105 | 2.1 | 1.28 × 106 | 3.23 × 105 | 4.0 |
40 | 1.36 × 105 | 6.62 × 104 | 2.1 | 7.91 × 105 | 1.66 × 105 | 4.8 |
45 | 6.93× 104 | 3.51 × 104 | 2.0 | 4.72 × 105 | 8.79 × 104 | 5.4 |
50 | 3.62 × 104 | 1.93 × 104 | 1.9 | 2.78 × 105 | 4.78 × 104 | 5.8 |
55 | 1.90 × 104 | 8.47 × 103 | 2.2 | 1.47 × 105 | 2.07 × 104 | 7.1 |
60 | 1.08 × 104 | 5.19 × 103 | 2.1 | 8.50 × 104 | 1.24 × 104 | 6.9 |
65 | 6.33 × 103 | 3.28 × 103 | 1.9 | 5.05 × 104 | 7.55 × 103 | 6.7 |
70 | 3.83 × 103 | 2.15 × 103 | 1.8 | 3.10 × 104 | 4.76 × 103 | 6.5 |
Sample/Position | % Saturates | % Aromatics | % Resins | % Asphaltenes |
---|---|---|---|---|
1/Top | 6.2 | 32.5 | 40.9 | 20.4 |
1/Middle | 6.2 | 45.1 | 27.3 | 21.4 |
1/Bottom | 5.7 | 35.7 | 35.8 | 22.8 |
2/Top | 6.1 | 29.8 | 45.9 | 18.2 |
2/Middle | 6.6 | 46.8 | 22.3 | 24.3 |
2/Bottom | 5.3 | 41.1 | 31.8 | 21.8 |
3/Top | 6.4 | 29.1 | 46.7 | 17.8 |
3/Middle | 5.7 | 31.1 | 41.8 | 21.4 |
3/Bottom | 6.1 | 29.3 | 42.5 | 22.1 |
Sample/Position | % Saturates | % Aromatics | % Resins | % Asphaltenes |
---|---|---|---|---|
1/Top | 5.7 | 22.3 | 49.9 | 22.1 |
1/Middle | 6.3 | 36.1 | 33.4 | 24.2 |
1/Bottom | 5.9 | 29.1 | 39.9 | 25.1 |
2/Top | 6.1 | 20.9 | 58.9 | 14.1 |
2/Middle | 6.1 | 30.2 | 44.2 | 19.5 |
2/Bottom | 6.1 | 21.7 | 53.1 | 19.1 |
3/Top | 5.6 | 18.9 | 59.7 | 15.8 |
3/Middle | 5.6 | 33.8 | 38.7 | 21.9 |
3/Bottom | 5.4 | 27.5 | 45.8 | 21.3 |
Sample | AICO | AISO | AICH3 | AI(FTIR) |
---|---|---|---|---|
Oven Top | 0.031 | 0.063 | 0.090 | 1.042 |
Oven Middle | 0.025 | 0.065 | 0.089 | 1.018 |
Oven Bottom | 0.038 | 0.064 | 0.092 | 1.004 |
UV Top | 0.031 | 0.080 | 0.102 | 1.085 |
UV Middle | 0.027 | 0.066 | 0.100 | 0.931 |
UV Bottom | 0.034 | 0.067 | 0.108 | 0.943 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouelsaad, A.; White, G. Comparing the Effect of Thermal-Oxidation and Photo-Oxidation of Asphalt Mixtures on the Rheological and Chemical Properties of Extracted Bituminous Binder. Materials 2022, 15, 6793. https://doi.org/10.3390/ma15196793
Abouelsaad A, White G. Comparing the Effect of Thermal-Oxidation and Photo-Oxidation of Asphalt Mixtures on the Rheological and Chemical Properties of Extracted Bituminous Binder. Materials. 2022; 15(19):6793. https://doi.org/10.3390/ma15196793
Chicago/Turabian StyleAbouelsaad, Ahmed, and Greg White. 2022. "Comparing the Effect of Thermal-Oxidation and Photo-Oxidation of Asphalt Mixtures on the Rheological and Chemical Properties of Extracted Bituminous Binder" Materials 15, no. 19: 6793. https://doi.org/10.3390/ma15196793
APA StyleAbouelsaad, A., & White, G. (2022). Comparing the Effect of Thermal-Oxidation and Photo-Oxidation of Asphalt Mixtures on the Rheological and Chemical Properties of Extracted Bituminous Binder. Materials, 15(19), 6793. https://doi.org/10.3390/ma15196793