Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review
Abstract
:1. Introduction
2. Fabrication of Metal-Silica Nanocomplex Using Diatom Based Biosilica
2.1. Titanium, Germanium, Palladium and Platinum
2.2. Silver
2.3. Gold
2.4. Calcium
2.5. Manganese, Iron, Cadmium, Zinc
2.6. Aluminium, Nickel, Europium, Zirconium and Tin
3. Capability for Heavy Metal Uptake and Removal
3.1. Arsenic
3.2. Chromium
3.3. Mercury
3.4. Silver, Cadmium, Lead, Copper
3.5. Zinc and Iron
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bertrand, M. Carotenoid biosynthesis in diatoms. Photosynth. Res. 2010, 106, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Haynes, K.; Hofmann, T.A.; Smith, C.J.; Ball, A.S.; Underwood, G.J.C.; Osborn, A.M. Diatom-Derived Carbohydrates as Factors Affecting Bacterial Community Composition in Estuarine Sediments. Appl. Environ. Microbiol. 2007, 73, 6112–6124. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.C.; Brandt, D.; Schloßmacher, U.; Wang, X.; Tahir, M.N.; Tremel, W.; Belikov, S.I.; Müller, W.E. Enzymatic pro-duction of biosilica glass using enzymes from sponges: Basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 2007, 94, 339–359. [Google Scholar] [CrossRef]
- Hoek, C.; Mann, D.; Jahns, H.M.; Jahns, M. Algae: An Introduction to Phycology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Drum, R.W.; Gordon, R. Star Trek replicators and diatom nanotechnology. Trends Biotechnol. 2003, 21, 325–328. [Google Scholar] [CrossRef]
- Ropp, R.C. Encyclopedia of the Alkaline Earth Compounds; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Paasche, E. Silicon. In The Physiological Ecology of Phytoplankton; Morris, I., Ed.; University California Press: Berkeley, CA, USA, 1980; pp. 259–284. [Google Scholar]
- Amo, Y.D.; Brzezinski, M.A. The chemical form of dissolved Si taken up by marine diatoms. J. Phycol. 1999, 35, 1162–1170. [Google Scholar] [CrossRef]
- Hildebrand, M.; Volcani, B.E.; Gassmann, W.; Schroeder, J.I. A gene family of silicon transporters. Nature 1997, 385, 688–689. [Google Scholar] [CrossRef]
- Hildebrand, M.; Dahlin, K.; Volcani, B.E. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. MGG 1998, 260, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Pamirsky, I.E.; Golokhvast, K.S. Silaffins of Diatoms: From Applied Biotechnology to Biomedicine. Mar. Drugs 2013, 11, 3155–3167. [Google Scholar] [CrossRef]
- Vrieling, E.G.; Gieskes, W.W.C.; Beelen, T.P.M. Silicon deposition in diatoms: Control by the PH inside the silicon deposition vesicle. J. Phycol. 1999, 35, 548–559. [Google Scholar] [CrossRef]
- Lopez, P.J.; Desclés, J.; Allen, A.; Bowler, C. Prospects in diatom research. Curr. Opin. Biotechnol. 2005, 16, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Schelske, C.L.; Stoermer, E.F. Eutrophication, Silica Depletion, and Predicted Changes in Algal Quality in Lake Michigan. Science 1971, 173, 423–424. [Google Scholar] [CrossRef]
- Sumper, M.; Brunner, E. Learning from Diatoms: Nature’s Tools for the Production of Nanostructured Silica. Adv. Funct. Mater. 2006, 16, 17–26. [Google Scholar] [CrossRef]
- Gordon, R.; Sterrenburg, F.A.; Sandhage, K.H. A Special Issue on Diatom Nanotechnology. J. Nanosci. Nanotechnol. 2005, 5, 1–4. [Google Scholar] [CrossRef]
- De Stefano, L.; Rotiroti, L.; De Stefano, M.; Lamberti, A.; Lettieri, S.; Setaro, A.; Maddalena, P. Marine diatoms as optical bi-osensors. Biosens. Bioelectron. 2009, 24, 1580–1584. [Google Scholar] [CrossRef]
- De Stefano, L.; Maddalena, P.M.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M. Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices Microstruct. 2009, 46, 84–89. [Google Scholar] [CrossRef]
- Yamanaka, S.; Yano, R.; Usami, H.; Hayashida, N.; Ohguchi, M.; Takeda, H.; Yoshino, K. Optical properties of diatom silica frustule with special reference to blue light. J. Appl. Phys. 2008, 103, 074701. [Google Scholar] [CrossRef]
- De Stefano, L.; Rendina, I.; De Stefano, M.; Bismuto, A.; Maddalena, P. Marine diatoms as optical chemical sensors. Appl. Phys. Lett. 2005, 87, 233902. [Google Scholar] [CrossRef]
- Bismuto, A.; Setaro, A.; Maddalena, P.M.; DeStefano, M.; De Stefano, L. Marine diatoms as optical chemical sensors: A time-resolved study. Sens. Actuators B Chem. 2008, 130, 396–399. [Google Scholar] [CrossRef]
- De Tommasi, E. Light Manipulation by Single Cells: The Case of Diatoms. J. Spectrosc. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Akhmadeev, A.A.; Sarandaev, E.V.; Salakhov, M.K. Synthesis optimization of photonic crystals based on silicon and vanadium dioxides. J. Phys. Conf. Ser. 2013, 461, 012022. [Google Scholar] [CrossRef]
- Prather, D.W.; Shi, S.; Murakowski, J.; Schneider, G.; Sharkawy, A.; Chen, C.; Miao, B. Silicon-Based Photonic Crystal Structures: From Design to Realization; Wiley Online Library: Hoboken, NJ, USA, 2008; pp. 47–93. [Google Scholar] [CrossRef]
- Stewart, M.P.; Buriak, J. Chemical and Biological Applications of Porous Silicon Technology. Adv. Mater. 2000, 12, 859–869. [Google Scholar] [CrossRef]
- Rosi, N.L.; Thaxton, C.S.; Mirkin, C.A. Control of Nanoparticle Assembly by Using DNA-Modified Diatom Templates. Angew. Chem. 2004, 116, 5616–5619. [Google Scholar] [CrossRef]
- Losic, D.; Yu, Y.; Aw, M.S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: Toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 2010, 46, 6323–6325. [Google Scholar] [CrossRef]
- Aw, M.S.; Bariana, M.; Yu, Y.; Addai-Mensah, J.; Losic, D. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl. 2012, 28, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Lerch, S.J.L.; Xu, L.; Li, X.; Chuang, Y.-J.; Howe, J.Y.; Mahurin, S.M.; Dai, S.; Hildebrand, M. Electronically transparent graphene replicas of diatoms: A new technique for the investigation of frustule morphology. Sci. Rep. 2014, 4, srep06117. [Google Scholar] [CrossRef]
- Delasoie, J.; Zobi, F. Natural Diatom Biosilica as Microshuttles in Drug Delivery Systems. Pharmaceutics 2019, 11, 537. [Google Scholar] [CrossRef]
- Vasani, R.B.; Losic, D.; Cavallaro, A.; Voelcker, N.H. Fabrication of stimulus-responsive diatom biosilica microcapsules for antibiotic drug delivery. J. Mater. Chem. B 2015, 3, 4325–4329. [Google Scholar] [CrossRef]
- Javalkote, V.S.; Pandey, A.P.; Puranik, P.R.; Deshmukh, P.K. Magnetically responsive siliceous frustules for efficient chem-otherapy. Mater. Sci. Eng. C 2015, 50, 107–116. [Google Scholar] [CrossRef]
- Cicco, S.R.; Vona, D.; De Giglio, E.; Cometa, S.; Mattioli-Belmonte, M.; Palumbo, F.; Ragni, R.; Farinola, G.M. Chemically Modified Diatoms Biosilica for Bone Cell Growth with Combined Drug-Delivery and Antioxidant Properties. ChemPlusChem 2015, 80, 1104–1112. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh, M.A.M.; Tutunji, M.F. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Res. 2001, 35, 3724–3728. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; Tutunju, M.F.; Shawabkeh, R.A. The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+ from water. Sep. Sci. Technol. 2000, 35, 2299–2310. [Google Scholar] [CrossRef]
- Al-Ghouti, M.; Khraisheh, M.; Ahmad, M.; Allen, S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. J. Colloid Interface Sci. 2005, 287, 6–13. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Degs, Y.; Khraisheh, M.A.; Ahmad, M.; Allen, S.J. Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite. J. Environ. Manag. 2009, 90, 3520–3527. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.; Khraisheh, M.; Ahmad, M.; Allen, S. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite. J. Hazard. Mater. 2007, 146, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.; Khraisheh, M.; Allen, S.; Ahmad, M. The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manag. 2003, 69, 229–238. [Google Scholar] [CrossRef]
- Osmanlioglu, A. Natural diatomite process for removal of radioactivity from liquid waste. Appl. Radiat. Isot. 2006, 65, 17–20. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Kovalchuk, I.; Buszewski, B. The separation of uranium ions by natural and modified diatomite from aqueous solution. J. Hazard. Mater. 2010, 181, 700–707. [Google Scholar] [CrossRef]
- Maznah, W.O.W.; Mansor, M. Aquatic pollution assessment based on attached diatom communities in the Pinang River Basin, Malaysia. Hydrobiologia 2002, 487, 229–241. [Google Scholar] [CrossRef]
- Govindan, N.; Maniam, G.P.; Yusoff, M.M.; Rahim, M.H.A.; Chatsungnoen, T.; Ramaraj, R.; Chisti, Y. Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. J. Appl. Phycol. 2020, 32, 375–387. [Google Scholar] [CrossRef]
- Tiwari, A.; Marella, T.K. Potential and Application of Diatoms for Industry-Specific Wastewater Treatment. In Application of Microalgae in Wastewater Treatment; Gupta, S.K., Bux, F., Eds.; Springer: Cham, Switzerland, 2019; pp. 321–339. [Google Scholar] [CrossRef]
- Baeyens, W.; Gao, Y.; Davison, W.; Galceran, J.; Leermakers, M.; Puy, J.; Superville, P.-J.; Beguery, L. In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth. Sci. Rep. 2018, 8, 16125. [Google Scholar] [CrossRef]
- Lin, Z.; Li, J.; Luan, Y.; Dai, W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol. Environ. Saf. 2020, 190, 110089. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, N.; Pal, R.; Ramaswami, A.; Nayak, D.; Lahiri, S. Diatom: A potential bio-accumulator of gold. J. Radioanal. Nucl. Chem. Artic. 2006, 270, 645–649. [Google Scholar] [CrossRef]
- Ferreira, L.F.; Giordano, G.F.; Gobbi, A.L.; Piazzetta, M.H.O.; Schleder, G.R.; Lima, R.S. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens. 2022, 7, 1045–1057. [Google Scholar] [CrossRef]
- Keshavarz, M.; Ahmad, N. Characterization and Modification of Mesoporous Silica Nanoparticles Prepared by Sol-Gel. J. Nanoparticles 2013, 2013, 102823. [Google Scholar] [CrossRef]
- Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Cell Selective Apoptosis Induced by Polymorphic Alteration of Self-Assembled Silica Nanowebs. ACS Appl. Mater. Interfaces 2017, 9, 6292–6305. [Google Scholar] [CrossRef]
- Su, Y.; Lundholm, N.; Friis, S.M.M.; Ellegaard, M. Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Res. 2015, 8, 2363–2372. [Google Scholar] [CrossRef]
- Managò, S.; Zito, G.; Rogato, A.; Casalino, M.; Esposito, E.; De Luca, A.C.; De Tommasi, E. Bioderived Three-Dimensional Hierarchical Nanostructures as Efficient Surface-Enhanced Raman Scattering Substrates for Cell Membrane Probing. ACS Appl. Mater. Interfaces 2018, 10, 12406–12416. [Google Scholar] [CrossRef]
- Losic, D.; Mitchell, J.G.; Voelcker, N.H. Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 2009, 21, 2947–2958. [Google Scholar] [CrossRef]
- Esumi, K.; Isono, A.R.; Yoshimura, T. Preparation of PAMAM− and PPI−Metal (Silver, Platinum, and Palladium) Nanocomposites and Their Catalytic Activities for Reduction of 4-Nitrophenol. Langmuir 2004, 20, 237–243. [Google Scholar] [CrossRef]
- Thomas, J.M. The principles of solid state chemistry hold the key to the successful design of heterogeneous catalysts for environmentally responsible processes. Microporous Mesoporous Mater. 2011, 146, 3–10. [Google Scholar] [CrossRef]
- Alvarez, E.; Blanco, J.; Avila, P.; Knapp, C. Activation of monolithic catalysts based on diatomaceous earth for sulfur dioxide oxidation. Catal. Today 1999, 53, 557–563. [Google Scholar] [CrossRef]
- Liu, H.; Lu, G.; Guo, Y.; Wang, J. Effect of pretreatment on properties of TS-1/diatomite catalyst for hydroxylation of phenol by H2O2 in fixed-bed reactor. Catal. Today 2004, 93, 353–357. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, S.; Du, G.; Shu, F.; Chen, J. Photocatalytic degradation property of Nano-TiO2/diatomite for rodamine B dye wastewater. Int. J. Mod. Phys. B 2009, 23, 1683–1688. [Google Scholar] [CrossRef]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. By a two-stage bioreactor cultivation process. ACS Nano 2008, 2, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Bose, R.; Roychoudhury, P.; Pal, R. In-situ green synthesis of fluorescent silica–silver conjugate nanodendrites using na-noporous frustules of diatoms: An unprecedented approach. Bioprocess. Biosyst. Eng. 2021, 44, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Campbell, J.; Wang, X.; Rorrer, G.L.; Wang, A.X. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica. Opt. Express 2013, 21, 15308–15313. [Google Scholar] [CrossRef]
- Terracciano, M.; Napolitano, M.; De Stefano, L.; De Luca, A.C.; Rea, I. Gold decorated porous biosilica nanodevices for advanced medicine. Nanotechnology 2018, 29, 235601. [Google Scholar] [CrossRef]
- Fischer, C.; Adam, M.; Mueller, A.C.; Sperling, E.; Wustmann, M.; van Pée, K.H.; Kaskel, S.; Brunner, E. Gold nanoparti-cle-decorated diatom biosilica: A favorable catalyst for the oxidation of D-glucose. ACS Omega 2016, 1, 253–1261. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Addai-Mensah, J.; Losic, D. Synthesis of Self-Supporting Gold Microstructures with Three-Dimensional Morphologies by Direct Replication of Diatom Templates. Langmuir 2010, 26, 14068–14072. [Google Scholar] [CrossRef]
- Briceño, S.; Chavez-Chico, E.A.; González, G. Diatoms decorated with gold nanoparticles by In-situ and Ex-situ methods for in vitro gentamicin release. Mater. Sci. Eng. C 2021, 123, 112018. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; del Monte, F.; Rodriguez, B.J.; Dockery, P.; Finn, D.P.; Pandit, A. Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep. 2013, 3, 3205. [Google Scholar] [CrossRef]
- Basharina, T.N.; Danilovtseva, E.N.; Zelinskiy, S.N.; Klimenkov, I.V.; Likhoshway, Y.V.; Annenkov, V.V. The Effect of Titanium, Zirconium and Tin on the Growth of Diatom Synedra Acus and Morphology of Its Silica Valves. Silicon 2012, 4, 239–249. [Google Scholar] [CrossRef]
- Skolem, L.M.B. Biosynthesis and Characterization of Ti-Doped Silica-Based Nanostructures Formed by the Diatoms Pinnularia sp. and Coscinodiscus Wailesii; NTNU Open: Trondheim, Norway, 2011; p. 801. [Google Scholar]
- Maeda, Y.; Niwa, Y.; Tang, H.; Kisailus, D.; Yoshino, T.; Tanaka, T. Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris. ACS Appl. Bio Mater. 2018, 1, 2021–2029. [Google Scholar] [CrossRef]
- Jeffryes, C.; Solanki, R.; Rangineni, Y.; Wang, W.; Chang, C.; Rorrer, G.L. Electroluminescence and Photoluminescence from Nanostructured Diatom Frustules Containing Metabolically Inserted Germanium. Adv. Mater. 2008, 20, 2633–2637. [Google Scholar] [CrossRef]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mater. Sci. Eng. C 2008, 28, 107–118. [Google Scholar] [CrossRef]
- Qin, T.; Gutu, T.; Jiao, J.; Chang, C.-H.; Rorrer, G.L. Photoluminescence of Silica Nanostructures from Bioreactor Culture of Marine Diatom Nitzschia frustulum. J. Nanosci. Nanotechnol. 2008, 8, 2392–2398. [Google Scholar] [CrossRef]
- Davis, A.K.; Hildebrand, M. A self-propagating system for Ge incorporation into nanostructured silica. Chem. Commun. 2008, 37, 4495–4497. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z. Diatomite-Supported Pd Nanoparticles: An Efficient Catalyst for Heck and Suzuki Reactions. J. Org. Chem. 2006, 71, 7485–7487. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Szczyglewska, P.; Wojtczak, I.; Nowak, I.; Witkowski, A.; Buszewski, B.; Feliczak-Guzik, A. Diatom Biosilica Doped with Palladium(II) Chloride Nanoparticles as New Efficient Photocatalysts for Methyl Orange Degradation. Int. J. Mol. Sci. 2021, 22, 6734. [Google Scholar] [CrossRef]
- Jantschke, A.; Herrmann, A.K.; Lesnyak, V.; Eychmüller, A.; Brunner, E. Decoration of diatom biosilica with noble metal and semiconductor nanoparticles (<10 nm): Assembly, characterization, and applications. Chem. Asian J. 2012, 7, 85–90. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Zheng, T.; Jiang, D.; Zhou, Z.; Liu, C.; Zhang, X.; Zhang, Y.; Losic, D. Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 2019, 370, 136–147. [Google Scholar] [CrossRef]
- Gutu, T.; Gale, D.K.; Jeffryes, C.; Wang, W.; Chang, C.-H.; Rorrer, G.L.; Jiao, J. Electron Microscopy and Optical Characterization of Cadmium Sulphide Nanocrystals Deposited on the Patterned Surface of Diatom Biosilica. J. Nanomater. 2009, 2009, 1–7. [Google Scholar] [CrossRef]
- Zhou, H.; Fan, T.; Li, X.; Ding, J.; Zhang, D.; Li, X.; Gao, Y. Bio-inspired bottom-up assembly of diatom-templated ordered porous metal chalcogenide meso/nanostructures. Eur. J. Inorg. Chem. 2009, 2009, 211–215. [Google Scholar] [CrossRef]
- Cai, Y.; Dickerson, M.B.; Haluska, M.S.; Kang, Z.; Summers, C.J.; Sandhage, K.H. Manganese-Doped Zinc Orthosilicate-Bearing Phosphor Microparticles with Controlled Three-Dimensional Shapes Derived from Diatom Frustules. J. Am. Ceram. Soc. 2007, 90, 1304–1308. [Google Scholar] [CrossRef]
- Machill, S.; Köhler, L.; Ueberlein, S.; Hedrich, R.; Kunaschk, M.; Paasch, S.; Schulze, R.; Brunner, E. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris. BioMetals 2013, 26, 141–150. [Google Scholar] [CrossRef]
- Köhler, L.; Machill, S.; Werner, A.; Selzer, C.; Kaskel, S.; Brunner, E. Are diatoms “green” aluminosilicate synthesis micro-reactors for future catalyst production? Molecules 2017, 22, 2232. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Vona, D.; Presti, M.L.; Urbano, L.; Cicco, S.; Gristina, R.; Palumbo, F.; Ragni, R.; Farinola, G.M. Ca2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: Investigation on Saos-2 biocompatibility. MRS Adv. 2017, 2, 1047–1058. [Google Scholar] [CrossRef]
- Li, J.; Han, J.; Sun, Q.; Wang, Y.; Mu, Y.; Zhang, K.; Dou, X.; Kong, M.; Chen, X.; Feng, C. Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control. J. Mater. Chem. B 2018, 6, 7834–7841. [Google Scholar] [CrossRef] [PubMed]
- Townley, H.E.; Woon, K.L.; Payne, F.P.; White-Cooper, H.; Parker, A.R. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology 2007, 18, 295101. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, W.; Wang, L.; Liao, X.; Liu, P.; Deng, X.; Li, J. Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms. Mater. Lett. 2013, 110, 253–255. [Google Scholar] [CrossRef]
- Gannavarapu, K.P.; Ganesh, V.; Thakkar, M.; Mitra, S.; Dandamudi, R.B. Nanostructured Diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Sens. Actuators B Chem. 2019, 288, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Weatherspoon, M.R.; Dickerson, M.B.; Wang, G.; Cai, Y.; Shian, S.; Jones, S.C.; Marder, S.R.; Sandhage, K.H. Thin, Conformal, and Continuous SnO2 Coatings on Three-Dimensional Biosilica Templates through Hydroxy-Group Amplification and Layer-By-Layer Alkoxide Deposition. Angew. Chem. 2007, 119, 5826–5829. [Google Scholar] [CrossRef]
- Toster, J.; Iyer, K.S.; Xiang, W.; Rosei, F.; Spiccia, L.; Raston, C.L. Diatom frustules as light traps enhance DSSC efficiency. Nanoscale 2013, 5, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ. Sci. 2011, 4, 3930–3941. [Google Scholar] [CrossRef]
- Gautam, S.; Kashyap, M.; Gupta, S.; Kumar, V.; Schoefs, B.; Gordon, R.; Jeffryes, C.; Joshi, K.B.; Vinayak, V. Metabolic engi-neering of tio 2 nanoparticles in Nitzschia palea to form diatom nanotubes: An ingredient for solar cells to produce electricity and biofuel. RSC Adv. 2016, 6, 97276–97284. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Furlani, M.; Albinsson, I.; Wulff, A.; Mellander, B.-E. Diatom frustules enhancing the efficiency of gel polymer electrolyte based dye-sensitized solar cells with multilayer photoelectrodes. Nanoscale Adv. 2020, 2, 199–209. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, X.; Su, H.; Chen, S.; He, Z.; Zhao, C.; Yang, S. A Visible-NIR Responsive Dye-Sensitized Solar Cell Based on Diatom Frustules and Cosensitization of Photopigments from Diatom and Purple Bacteria. J. Chem. 2020, 2020, 1710989. [Google Scholar] [CrossRef]
- Chauton, M.S.; Skolem, L.M.B.; Olsen, L.M.; Vullum, P.E.; Walmsley, J.; Vadstein, O. Titanium uptake and incorporation into silica nanostructures by the diatom Pinnularia sp. (Bacillariophyceae). J. Appl. Phycol. 2014, 27, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Butcher, K.; Ferris, J.; Phillips, M.; Wintrebert-Fouquet, M.; Wah, J.J.; Jovanovic, N.; Vyverman, W.; Chepurnov, V. A luminescence study of porous diatoms. Mater. Sci. Eng. C 2005, 25, 658–663. [Google Scholar] [CrossRef]
- Liu, S.; Jeffryes, C.; Rorrer, G.L.; Chang, C.-H.; Jiao, J.; Gutu, T. Blue Luminescent Biogenic Silicon-Germanium Oxide Nanocomposites. MRS Proc. 2005, 873, K1.4. [Google Scholar] [CrossRef]
- Qin, T.; Gutu, T.; Jiao, J.; Chang, C.-H.; Rorrer, G.L. Biological Fabrication of Photoluminescent Nanocomb Structures by Metabolic Incorporation of Germanium into the Biosilica of the Diatom Nitzschia frustulum. ACS Nano 2008, 2, 1296–1304. [Google Scholar] [CrossRef]
- Johnson, S.; Joannopoulos, J.D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 2001, 8, 173–190. [Google Scholar] [CrossRef]
- Joannopoulos, J.; Meade, R.D.; Winn, J. Photonic Crystals–Princeton; Princeton University: Princeton, NJ, USA, 1995. [Google Scholar]
- Hao, C.J.; Zhao, X.J. Highly Efficient and Recyclable Diatomite-Supported Pd Nanoparticles for the Suzuki-Miyaura Coupling Reaction. Adv. Mater. Res. 2010, 113–116, 1824–1827. [Google Scholar] [CrossRef]
- Vona, D.; Cicco, S.R.; Ragni, R.; Leone, G.; Marco, L.P.; Farinola, G.M. Biosilica/polydopamine/silver nanoparticles composites: New hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Commun. 2018, 8, 911–917. [Google Scholar] [CrossRef]
- Roychoudhury, P.; Golubeva, A.; Dąbek, P.; Gloc, M.; Dobrucka, R.; Kurzydłowski, K.; Witkowski, A. Diatom Mediated Production of Fluorescent Flower Shaped Silver-Silica Nanohybrid. Materials 2021, 14, 7284. [Google Scholar] [CrossRef]
- Sivashanmugan, K.; Squire, K.; Kraai, J.A.; Tan, A.; Zhao, Y.; Rorrer, G.L.; Wang, A.X. Biological Photonic Crystal-Enhanced Plasmonic Mesocapsules: Approaching Single-Molecule Optofluidic-SERS Sensing. Adv. Opt. Mater. 2019, 7, 1900415. [Google Scholar] [CrossRef]
- Korkmaz, A.; Kenton, M.; Aksin, G.; Kahraman, M.; Wachsmann-Hogiu, S. Inexpensive and flexible SERS substrates on ad-hesive tape based on biosilica plasmonic nanocomposites. ACS Appl. Nano. Mater. 2018, 1, 5316–5326. [Google Scholar] [CrossRef]
- Kraai, J.A.; Wang, A.X.; Rorrer, G.L. Photonic Crystal Enhanced SERS Detection of Analytes Separated by Ultrathin Layer Chromatography Using a Diatom Frustule Monolayer. Adv. Mater. Interfaces 2020, 7, 2000191. [Google Scholar] [CrossRef]
- Kamińska, A.; Sprynskyy, M.; Winkler, K.; Szymborski, T. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Anal. Bioanal. Chem. 2017, 409, 6337–6347. [Google Scholar] [CrossRef]
- Kong, X.; Li, E.; Squire, K.; Liu, Y.; Wu, B.; Cheng, L.-J.; Wang, A.X. Plasmonic nanoparticles-decorated diatomite biosilica: Extending the horizon of on-chip chromatography and label-free biosensing. J. Biophotonics 2017, 10, 1473–1484. [Google Scholar] [CrossRef]
- Tramontano, C.; Miranda, B.; Chianese, G.; De Stefano, L.; Forestiere, C.; Pirozzi, M.; Rea, I. Design of Gelatin-Capped Plasmonic-Diatomite Nanoparticles with Enhanced Galunisertib Loading Capacity for Drug Delivery Applications. Int. J. Mol. Sci. 2021, 22, 10755. [Google Scholar] [CrossRef]
- Petzold, A.; Zollfrank, C. A facile route to diatoms decorated with gold nanoparticles and their optical properties. Bioinspired Biomim. Nanobiomaterials 2019, 8, 81–85. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, NY, USA, 2017. [Google Scholar]
- Iler, R.K. The Colloid Chemistry of Silica and Silicates. LWW 1955, 80, 86. [Google Scholar] [CrossRef]
- Saxena, A.; Tiwari, A.; Kaushik, R.; Iqbal, H.M.; Parra-Saldívar, R. Diatoms recovery from wastewater: Overview from an ecological and economic perspective. J. Water Process Eng. 2021, 39, 101705. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, J.; Chen, F.; Zou, Y.; Wei, Y.; Zhong, H.; Pan, K. Mechanisms underlying silicon-dependent metal tolerance in the marine diatom Phaeodactylum tricornutum. Environ. Pollut. 2020, 262, 114331. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Khraisheh, M.A.; Tutuji, M. Flow injection potentiometric stripping analysis for study of adsorption of heavy metal ions onto modified diatomite. Chem. Eng. J. 2004, 104, 83–91. [Google Scholar] [CrossRef]
- Jang, M.; Min, S.H.; Park, J.K.; Tlachac, E.J. Hydrous ferric oxide incorporated diatomite for remediation of arsenic contam-inated groundwater. Environ. Sci. Technol. 2007, 41, 3322–3328. [Google Scholar] [CrossRef]
- Jiang, W.; Su, H.; Tan, T. Adsorption properties for heavy metal ions of molecular imprinting chitosan-coated diatomite beads in water-extraction liquid of Rhodiola L. J. Chem. Ind. Eng. 2008, 59, 1179. [Google Scholar]
- Chang, F.; Qu, J.; Liu, H.; Liu, R.; Zhao, X. Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite re-moval: Preparation and evaluation. J. Colloid Interface Sci. 2009, 338, 353–358. [Google Scholar] [CrossRef]
- Nenadovic, M.; Kovacevic, R.; Matovic, L.; Matovic, B.; Jovanović, Z.; Novakovic, J.G. Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci. Sinter. 2009, 41, 309–317. [Google Scholar] [CrossRef]
- Sheng, G.; Wang, S.; Hu, J.; Lu, Y.; Li, J.; Dong, Y.; Wang, X. Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surfaces A Physicochem. Eng. Asp. 2009, 339, 159–166. [Google Scholar] [CrossRef]
- Sljivic, M.; Smiciklas, I.; Pejanovic, S.; Plecas, I. Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Appl. Clay Sci. 2009, 43, 33–40. [Google Scholar] [CrossRef]
- Pan, Y.-F.; Chiou, C.T.; Lin, T.-F. Adsorption of arsenic(V) by iron-oxide-coated diatomite (IOCD). Environ. Sci. Pollut. Res. 2010, 17, 1401–1410. [Google Scholar] [CrossRef]
- Yuan, P.; Liu, D.; Fan, M.; Yang, D.; Zhu, R.; Ge, F.; Zhu, J.; He, H. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J. Hazard. Mater. 2010, 173, 614–621. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, T.; Zhang, Z.; Xu, L.; Zhang, C. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells. PLoS ONE 2015, 10, e0123395. [Google Scholar] [CrossRef]
- Thakkar, M.; Randhawa, V.; Mitra, S.; Wei, L. Synthesis of diatom–FeOx composite for removing trace arsenic to meet drinking water standards. J. Colloid Interface Sci. 2015, 457, 169–173. [Google Scholar] [CrossRef]
- Hedayatkhah, A.; Cretoiu, M.S.; Emtiazi, G.; Stal, L.J.; Bolhuis, H. Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production. J. Environ. Manag. 2018, 227, 313–320. [Google Scholar] [CrossRef]
- Hernández-Ávila, J.; Salinas-Rodríguez, E.; Cerecedo-Sáenz, E.; Reyes-Valderrama, M.I.; Arenas-Flores, A.; Román-Gutiérrez, A.D.; Rodríguez-Lugo, V. Diatoms and Their Capability for Heavy Metal Removal by Cationic Exchange. Metals 2017, 7, 169. [Google Scholar] [CrossRef]
- Yü, Y.; Addai-Mensah, J.; Losic, D. Functionalized diatom silica microparticles for removal of mercury ions. Sci. Technol. Adv. Mater. 2012, 13, 015008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabiri, S.; Tran, D.N.H.; Azari, S.; Losic, D. Graphene-Diatom Silica Aerogels for Efficient Removal of Mercury Ions from Water. ACS Appl. Mater. Interfaces 2015, 7, 11815–11823. [Google Scholar] [CrossRef]
- Khraisheh, M.; Al-Degs, Y.; McMINN, W. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 2004, 99, 177–184. [Google Scholar] [CrossRef]
- Al-Quraishi, D.O.; Abbas, I.K. Removing heavy metals by diatoms nitzschia palea and navicula incerta in their aqueous solutions. Plant Arch. 2019, 19 (Suppl. S1), 272–278. [Google Scholar]
- Cherifi, O.; Sbihi, K.; Bertrand, M.; Cherifi, K. The removal of metals (Cd, Cu and Zn) from the Tensift river using the diatom Navicula subminuscula Manguin: A laboratory study. Int. J. Adv. Res. Biol. Sci. 2016, 3, 177–187. [Google Scholar]
- González-Dávila, M.; Santana-Casiano, J.; Laglera, L.M. Copper adsorption in diatom cultures. Mar. Chem. 2000, 70, 161–170. [Google Scholar] [CrossRef]
- Sbihi, K.; Cherifi, O.; Bertrand, M.; El Gharmali, A. Biosorption of metals (Cd, Cu and Zn) by the freshwater diatom Planothidium lanceolatum: A laboratory study. Diatom. Res. 2014, 29, 55–63. [Google Scholar] [CrossRef]
- Santos, J.; Almeida, S.F.P.; Figueira, E. Cadmium chelation by frustulins: A novel metal tolerance mechanism in Nitzschia palea (Kützing) W. Smith. Ecotoxicology 2013, 22, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, M.J.; Hunter, K.A. The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseu-donana. Limnol. Oceanogr. 2000, 45, 1517–1524. [Google Scholar] [CrossRef]
- Jaccard, T.; Ariztegui, D.; Wilkinson, K. Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii. Chem. Geol. 2009, 265, 381–386. [Google Scholar] [CrossRef]
- Maher, W.; Goessler, W.; Kirby, J.; Raber, G. Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Mar. Chem. 1999, 68, 169–182. [Google Scholar] [CrossRef]
- Cervantes, C.; Campos-García, J.; Devars, S.; Gutiérrez-Corona, F.; Loza-Tavera, H.; Torres-Guzmán, J.C.; Moreno-Sánchez, R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 2001, 25, 335–347. [Google Scholar] [CrossRef]
- Zhou, B.; Zou, Y.; Ma, J.; Li, Y.; Pan, K. Toxicity and Bioaccumulation of Copper in Phaeodactylum tricornutum Under Different Macronutrient Conditions. Front. Mar. Sci. 2022, 9, 907114. [Google Scholar] [CrossRef]
- Nichols, H.W. Growth media-freshwater. In Handbook of Phycological Methods: Culture Methods and Growth Measurements; Stein, J.R., Ed.; Cambridge University Press: Cambridge, UK, 1973; pp. 7–24. [Google Scholar]
- Ingall, E.D.; Diaz, J.M.; Longo, A.F.; Oakes, M.; Finney, L.; Vogt, S.; Lai, B.; Yager, P.; Twining, B.; Brandes, J.A. Role of biogenic silica in the removal of iron from the Antarctic seas. Nat. Commun. 2013, 4, 1981. [Google Scholar] [CrossRef]
- Gordon, R.; Drum, R.W. The Chemical Basis of Diatom Morphogenesis. In International Review of Cytology; Academic Press: Cambridge, MA, USA, 1994; Volume 150, pp. 243–372. [Google Scholar] [CrossRef]
- Sharma, N.; Simon, D.P.; Diaz-Garza, A.M.; Fantino, E.; Messaabi, A.; Meddeb-Mouelhi, F.; Germain, H.; Desgagné-Penix, I. Diatoms Biotechnology: Various Industrial Applications for a Greener Tomorrow. Front Mar. Sci. 2021, 8, 636613. [Google Scholar] [CrossRef]
Metals | Source of Silica | Mode of Synthesis | Applications of Metal Conjugated Silica | References |
---|---|---|---|---|
Ag | Halamphora subturgida | diffusion-limited aggregate (DLA) model | biosensor | [60] |
Pinnularia sp. | AgNPs coating on frustules using APTES adhesive | SERS sensing | [61] | |
Au | diatomite | PEG altered diatomite being adorned with AuNPs by one-pot liquid-phase synthesis | considered as safe material for medical applications as showed less cytotoxic effect on HeLa cells after 72 h of incubation | [62] |
Stephanopyxis turris Eucampia zodiacus Thalassiosira pseudonana | covalent coupling method | being exploited as favorable catalyst for oxidation of d-Glucose to d-gluconic acid. | [63] | |
diatom derived biosilica | electroless Au deposition onto a diatom silica substrate, following substrate expulsion by acid dissolution, allows for the creation of self-supporting gold microstructures. | used as catalyst in reduction of 4-nitrophenol to 4-aminophenol in the presence sodium borohydride | [64] | |
Aulacoseria sp. | chemically modified frustules being decorated with AuNPs by Ex situ and In situ method | gentamicin delivery in simulated body fluid | [65] | |
Ti | Pinnularia sp. | utilizing a two-stage photobioreactor cultivation procedure, Ti was metabolically inserted into the diatom’s patterned biosilica | biocompatible dye-sensitized solar cells (DSSCs) | [59] |
Thalassiosira weissflogii | chemical modification of frustule in vivo by TiBALDH | metabolic substitution with silicon for a dopant variety template with better photocatalytic activity | [66] | |
Coscinodiscus wailesii and Synedra acus | in vivo doping of Ti through addition in the culture media | metabolic substitution with silicon for a dopant variety template | [67,68] | |
Fistulifera solaris | chemical modification of frustules in vivo by TiBALDH | metabolic substitution with silicon for a dopant variety template, would be useful in bioremediation, water purification, and energy conversion/storage. | [69] | |
Ge | Pinnularia sp. | metabolic insertion of Ge into the frustules through culture medium | imparts optoelectronic properties | [70,71] |
Nitzschia frustulum | metabolic insertion of Ge into the frustules through culture medium | nanocomb structures with optoelectronic properties | [72] | |
Thalassiosira pseudonana | metabolic insertion of Ge into the frustules through culture medium | Fabrication of electronic devices | [73] | |
Pd | Diatomite | chemically modified diatomite in presence of PVP | used as catalyst in Heck and Suzuki reactions | [74] |
Pseudostaurosira trainorii | ultrasound treatment of frustules with PdCl2 | showed methyl orange removal efficiency | [75] | |
Pt | Coscinodiscus wailesii | diatom-templated Pt by layer-by-layer deposition and covalent linking | high catalytic activity in redox reaction between hexacyanoferrate (III) and thiosulfate | [76] |
Fe | Diatomite | dopamine-modified Fe3O4 nanoparticle self-assembled on the diatom surface in one step by electrostatic attraction | supercapacitors, drug delivery | [27,77] |
Mn | Diatomite | etching process. | supercapacitors | [77] |
Cd | Pinnularia sp. | using chemical bath deposition process, nanostructured polycrystalline CdS thin film coated on biosilica substrate | chemical sensor | [78] |
Zn | Coscinodiscus lineatus | deposition of ZnS onto frustules by sonochemical process | photonic applications | [79] |
Diatomaceous earth | coating of Zn particles on diatom frustules by exposing to an acetate precursor solution | photonic applications | [80] | |
Al | Stephanopyxis turris | in vivo doping of Al through addition in the culture media | - | [81] |
Thalassiosira pseudonana | in vivo and in vitro doping of Al through addition in the culture media | strong catalytic activity | [82] | |
Ca | Thalassiosira weissflogii and Coscinodiscus sp. | in vivo doping of Cd through addition in the culture media | would be a useful substrate for the development of fibroblasts and osteoblasts | [83,84] |
Ni | Coscinodiscus wailesii | doping of Ni through addition in the culture media | chemical sensor | [85] |
Eu | Navicula sp. | doping of Eu through addition in the culture media | would be utilized in fluorescent lamps, plasma display panels, field emission displays, and cathode-ray tubes | [86] |
Zr | Phaeodactylum tricornutum | doping of Zr through addition in the culture media | electrochemical sensor | [87] |
Sn | Aulacoseira sp. | an automated surface sol-gel method was used to coat the hydroxy-rich diatom frustules in SnO2 | chemical sensor | [88] |
Metal | Source of Biosilica | Mode of Remediation | Metal Removal Capacity | References |
---|---|---|---|---|
Arsenic | Diatomite | adsorption, cationic exchange | 10.99 mg/g from 2 mg/L As3+ | [123] |
Phaeodactylum tricornutum | diatom–FeOx hybrid mediated adsorption | 12,500 µg/g | [124] | |
Chromium | Phaeodactylum tricornutum, Navicula pelliculosa | cell-associated polymeric compounds mediated biosorption | 1 mg/L | [125] |
Diatomite | cationic exchange | ≤10% removal | [126] | |
Mercury | Diatomite | MPTMS/APTES/AEAPTMS modified biosilica mediated adsorption | 185.2, 131.7, and 169.5 mg/g for MPTMS, APTES, and AEAPTMS functionalization, respectively | [127] |
Diatomaceous earth | self-assembled aerogel of graphene sheets and FeOOH NPs decorated DE assisted adsorption | >500 mg/g (at 400 mg/L Hg2+) of Hg2+ | [128] | |
Silver | Diatomite | cationic exchange | 95% Ag+ from 4.280 mg Ag+/L | [126] |
Lead | Diatomite | manganese oxide modified-diatomite (Mn-diatomite complex) mediated adsorption | 99 mg/g | [129] |
Nitzschia palea, Navicula incerta | diatom immobilized calcium-alginate beads-based metal removal | 100, 97, 96% from 0.5, 1 and 2 ppm Pb, respectively | [130] | |
Copper | Diatomite | manganese oxide modified-diatomite (Mn-diatomite complex) mediated adsorption | 56.7 mg/g | [129] |
Navicula subminuscula | metal Incorporation through absorption process | 90% removal | [131] | |
Thalassiosira weissflogii, Phaeodactylum tricornutum | metal removal through absorption process | - | [132] | |
Planothidium lanceolatum | metal removal through absorption process | 81 mg/g by 16 × 108 diatom cells L−1 | [133] | |
Cadmium | Nitzschia palea | frustulin protein mediated adsorption | 85.4% removal | [134] |
Diatomite | manganese oxide modified-diatomite (Mn-diatomite complex) mediated adsorption | 27 mg/g | [129] | |
Nitzschia palea, Navicula incerta | diatom immobilized calcium-alginate beads-based metal removal | 91, 94.6, and 94.5% for Cd from 0.5, 1 and 2 ppm Cd, respectively | [130] | |
Zinc | Thalassiosira pseudonana | metal incorporation through absorption process | 1–3% of the total amount of Zn was taken up by the diatom | [135] |
Stephanodiscus hantzschii | metal incorporation through absorption process | - | [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roychoudhury, P.; Bose, R.; Dąbek, P.; Witkowski, A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review. Materials 2022, 15, 6597. https://doi.org/10.3390/ma15196597
Roychoudhury P, Bose R, Dąbek P, Witkowski A. Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review. Materials. 2022; 15(19):6597. https://doi.org/10.3390/ma15196597
Chicago/Turabian StyleRoychoudhury, Piya, Rahul Bose, Przemysław Dąbek, and Andrzej Witkowski. 2022. "Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review" Materials 15, no. 19: 6597. https://doi.org/10.3390/ma15196597
APA StyleRoychoudhury, P., Bose, R., Dąbek, P., & Witkowski, A. (2022). Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal—A Review. Materials, 15(19), 6597. https://doi.org/10.3390/ma15196597