Enhancement of Optical Telecommunication Bands: Pr3+-Doped Halide Phosphate Glasses Display Broadband NIR Photoluminescence Emission
Abstract
:1. Introduction
2. Experimental Work
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Chen, B.J.; Pun, E.Y.B.; Lin, H. Ultra-broadband near-infrared emission in praseodymium ion doped germanium tellurite glasses for optical fiber amplifier at E-, S-, C-, and L-band. J. Appl. Phys. 2012, 111, 116101. [Google Scholar] [CrossRef]
- Zhou, B.; Pun, E.Y.-B. Superbroadband near-IR emission from praseodymium-doped bismuth gallate glasses. Opt. Lett. 2011, 36, 2958–2960. [Google Scholar] [CrossRef] [PubMed]
- Damak, K.; Yousef, E.; AlFaify, S.; Rüssel, C.; Maalej, R. Raman, green and infrared emission cross-sectionsof Er^3+ doped TZPPN tellurite glass. Opt. Mater. Express 2014, 4, 597. [Google Scholar] [CrossRef]
- Damak, K.; Yousef, E.S.; Al-Shihri, A.S.; Seo, H.J.; Rüssel, C.; Maâlej, R. Quantifying Raman and emission gain coefficients of Ho3+ doped TeO2·ZnO·PbO·PbF2·Na2O (TZPPN) tellurite glass. Solid State Sci. 2014, 28, 74–80. [Google Scholar] [CrossRef]
- Zhou, B.; Tao, L.; Tsang, Y.H.; Jin, W.; Pun, E. Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses. Opt. Express 2012, 20, 3803–3813. [Google Scholar] [CrossRef]
- Shen, L.; Chen, B.; Lin, H.; Pun, E. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier. J. Alloys Compd. 2015, 622, 1093–1097. [Google Scholar] [CrossRef]
- Sheng, Q.; Wang, X.; Chen, D. Near-infrared emission from Pr-doped borophosphate glass for broadband telecommunication. J. Lumin. 2013, 135, 38–41. [Google Scholar] [CrossRef]
- Han, X.; Shen, L.; Pun, E.Y.B.; Ma, T.; Lin, H. Pr3+-doped phosphate glasses for fiber amplifiers operating at 1.38–1.53 μm of the fifth optical telecommunication window. Opt. Mater. 2014, 36, 1203–1208. [Google Scholar] [CrossRef]
- Belançon, M.P.; Marconi, J.D.; Ando, M.F.; Barbosa, L.C. Near-IR emission in Pr3+ single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers. Opt. Mater. 2014, 36, 1020–1026. [Google Scholar] [CrossRef]
- Nachimuthu, P.; Vithal, M.; Jagannathan, R. Absorption and Emission Spectral Properties of Pr3+, Nd3+, and Eu3+ Ions in Heavy-Metal Oxide Glasses. J. Am. Ceram. Soc. 2004, 83, 597–604. [Google Scholar] [CrossRef]
- Balda, R.; Fernández, J.; De Pablos, A.; Fdez-Navarro, J.M. Spectroscopic properties of Pr3+ions in lead germanate glass. J. Phys. Condens. Matter 1999, 11, 7411–7421. [Google Scholar] [CrossRef]
- Jacinto, C.; Oliveira, S.L.; Nunes, L.A.O.; Myers, J.D.; Myers, M.J.; Catunda, T. Normalized-lifetime thermal-lens method for the determination of luminescence quantum efficiency and thermo-optical coefficients: Application to Nd3+ -doped glasses. Phys. Rev. B 2006, 73, 125107. [Google Scholar] [CrossRef]
- Righini, G.; Ferrari, M. Photoluminescence of rare-earth-doped glasses. Riv. Nuovo Cim. 2006, 28, 1–53. [Google Scholar] [CrossRef]
- Burtan-Gwizdala, B.; Reben, M.; Cisowski, J.; Yousef, E.S.; Lisiecki, R.; Nosidlak, N. Strong emission at 1000 nm from Pr3+/Yb3+-codoped multicomponent tellurite glass. Pure Appl. Chem. 2021, 94, 147–156. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Q.; Huang, L.; Wang, J.; Su, Q. Near ultraviolet and visible-to-near-infrared spectral converting properties and energy transfer mechanism of Sr_2SiO_4:Ce^3+, Pr^3+ phosphor. Opt. Mater. Express 2014, 4, 227. [Google Scholar] [CrossRef]
- Mahlke, G.; Gössing, P. Corning Cable Systems; Fiber Optic Cables; Publicis MCD Corporate Publishin: Munich, Germany, 2001; pp. 13–30. [Google Scholar]
- Burtan-Gwizdala, B.; Reben, M.; Cisowski, J.; Lisiecki, R.; Ryba-Romanowski, W.; Jarząbek, B.; Mazurek, Z.; Nosidlak, N.; Grelowska, I. The influence of Pr3+ content on luminescence and optical behavior of TeO2-WO3-PbO-Lu2O3 glass. Opt. Mat. 2015, 47, 231–236. [Google Scholar] [CrossRef]
- Seshadri, M.; Bell, M.J.V.; Anjos, V.; Messaddeq, Y. Spectroscopic investigations on Yb3+ doped and Pr3+/Yb3+ co-doped tellurite glasses for photonic applications. J. Rare Earths 2021, 39, 33–42. [Google Scholar] [CrossRef]
- Basavapoornima, C.; Kesavulu, C.; Maheswari, T.; Pecharapa, W.; Depuru, S.R.; Jayasankar, C. Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. J. Lumin. 2020, 228, 117585. [Google Scholar] [CrossRef]
- Sangwaranatee, N.W.; Kiwsakunkran, N.; Kaewkhao, J. Investigation on Physical and Optical of Praseodymium Doped Sodium Aluminum Barium Phosphate Glasses. J. Phys. Conf. Ser. 2020, 1428, 12031. [Google Scholar] [CrossRef]
- Ritu, S.; Rao, A.S.; Deopa, N.; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Vijaya Prakash, G. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten, Tellurite glasses for visible photonic device applications. Opt. Mater. 2018, 78, 457e464. [Google Scholar]
- Flizikowski, G.A.S.; Zanuto, V.S.; Nunes, L.A.O.; Baesso, M.L.; Malacarne, L.C.; Astrath, N.G.C. Standard and modified Judd-Ofelt theories in Pr3+-doped calcium, aluminosilicateglasses: A comparative analysis. J. Alloys Compd. 2018, 780, 705–710. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 903–922. [Google Scholar] [CrossRef]
- Afef, B.; Hegazy, H.H.; Algarni, H.; Yang, Y.; Damak, K.; Yousef, E.; Maalej, R. Spectroscopic analysis of trivalent Nd3+ /Yb3+ ions co-doped in PZS host glasses as a new laser material at 1.06 μm. J. Rare Earths 2017, 35, 361–367. [Google Scholar] [CrossRef]
- Afef, B.; Alqahtani, M.M.; Hegazy, H.H.; Yousef, E.; Damak, K.; Maâlej, R. Green and near-infrared emission of Er3+ doped PZS and PZC glasses. J. Lumin. 2018, 194, 706–712. [Google Scholar] [CrossRef]
- Hussein, K.I.; Alqahtani, M.S.; Alzahrani, K.J.; Alqahtani, F.F.; Zahran, H.Y.; Alshehri, A.M.; Yahia, I.S.; Reben, M.; Yousef, E.S. The Effect of ZnO, MgO, TiO2, and Na2O Modifiers on the Physical, Optical, and Radiation Shielding Properties of a TeTaNb Glass System. Materials 2022, 15, 1844. [Google Scholar] [CrossRef] [PubMed]
- Charfi, B.; Damak, K.; Alqahtani, M.S.; Hussein, K.I.; Alshehri, A.M.; Elkhoshkhany, N.; Assiri, A.L.; Alshehri, K.F.; Reben, M.; Yousef, E.S. Luminescence and Gamma Spectroscopy of Phosphate Glass Doped with Nd3+/Yb3+ and Their Multifunctional Applications. Photonics 2022, 9, 406. [Google Scholar] [CrossRef]
- Rayan, D.A.; Elbashar, Y.H.; Rashad, M.M.; El-Korashy, A. Optical spectroscopic analysis of cupric oxide doped barium phos-phate glass for bandpass absorption filter. J. Non-Cryst. Solids 2013, 382, 52–56. [Google Scholar] [CrossRef]
- Ghauri, M.; Siddiqi, S.; Shah, W.; Ashiq, M.; Iqbal, M. Optical properties of zinc molybdenum phosphate glasses. J. Non-Cryst. Solids 2009, 355, 2466–2471. [Google Scholar] [CrossRef]
- Elbashar, Y.H. Structural and spectroscopic analyses of copper doped P2O5-ZnO-K2O-Bi2O3 glasses. Process Appl. Ceram. 2015, 9, 169–173. [Google Scholar] [CrossRef]
- Judd, B.R. Optical Absorption Intensities of Rare-Earth Ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of crystal spectra of rare−earth ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Damak, K.; Maâlej, R.; Yousef, E.S.; Qusti, A.H.; Rüssel, C. Thermal and spectroscopic properties of Tm3+ doped TZPPN transparent glass laser material. J. Non-Cryst. Solids 2012, 358, 2974–2980. [Google Scholar] [CrossRef]
- Sharma, Y.K.; Singh, R.K.; Pal, S. Praseodymium Ion Doped Sodium Borosilicate Glasses: Energy Interaction and Radiative Properties. Am. J. Condens. Matter Phys. 2015, 5, 10–18. [Google Scholar] [CrossRef]
- Jia, G.; Wang, H.; Lu, X.; You, Z.; Li, J.; Zhu, Z.; Tu, C. Optical properties of Pr3+-doped SrWO4 crystal. Appl. Phys. A 2007, 90, 497–502. [Google Scholar] [CrossRef]
- Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3. United States: N. p.; Technical Report 1978; TRN: 79-005910. Available online: https://www.osti.gov/biblio/6417825/ (accessed on 4 August 2022). [CrossRef]
- Kaminskii, A.A. Laser Crystals: Their Physics and Properties; Springer: Berlin, Germany, 1981; pp. 157–158. [Google Scholar]
- Lalla, E.A.; Konstantinidis, M.; De Souza, I.; Daly, M.G.; Martín, I.R.; Lavín, V.; Rodríguez-Mendoza, U.R. Judd-Ofelt parameters of RE3+-doped fluorotellurite glass, (RE3: Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, and Tm3+). J. Alloys Compd. 2020, 845, 156028. [Google Scholar] [CrossRef]
- Ajithkumar, G.; Gupta, P.K.; Gin Jose, N.V. Unnikrishnan Judd±Ofelt intensity parameters and laser analysis of Pr3+.doped phosphate glasses sensitized by Mn2+ Ions. J. Non-Cryst. Solids 2000, 275, 93–106. [Google Scholar] [CrossRef]
- Malta, O.; Carlos, L. Intensities of 4f-4f transitions in glass materials. Quim. Nova 2003, 26, 889–895. [Google Scholar] [CrossRef]
- Goldner, P.; Auzel, F. Application of standard and modified Judd–Ofelt theories to a praseodymiumdoped fluorozirconate glass. J. Appl. Phys. 1996, 79, 7972. [Google Scholar] [CrossRef]
- Kornienko, A.A.; Kaminskii, A.A.; Dunina, E.B. Dependence of the Line Strength of f–f Transitions on the Manifold Energy. II. Analysis of Pr3+ in KPrP4O12. Phys. Status Solidi 1990, 157, 267–273. [Google Scholar] [CrossRef]
- Kumar, M.V.V.; Rama Gopal, K.; Reddy, R.R.; Lokeswara Reddy, G.V.; Sooraj Hussain, N.; Jamalaiah, B.C. Application of modified Judd–Ofelt theory and the evaluation of radiative properties of Pr3+-doped lead telluroborate glasses for laser applications. J. Non-Cryst. Solids 2013, 364, 20–27. [Google Scholar] [CrossRef]
- Sattayaporn, S.; Loiseau, P.; Aka, G.; Klimin, S.; Boldyrev, K.; Mavrin, B. Fine spectroscopy and Judd-Ofelt analysis of Pr3+ doped Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL). J. Lumin. 2019, 219, 116895. [Google Scholar] [CrossRef]
- Guo, W.; Lin, Y.; Gong, X.; Chen, Y.; Luo, Z.; Huang, Y. Growth and spectroscopic properties of Pr3+:NaLa(MoO4)2 crystal. J. Appl. Phys. 2008, 104, 53105. [Google Scholar] [CrossRef]
- Génova, R.T.; Martin, I.R.; Rodriguez-Mendoza, U.R.; Lahoz, F.; Lozano-Gorrin, A.D.; Nunez, P.; Gonzalez-Platas, J.; Lavin, V. Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass–ceramic. Applications of the standard and modified Judd–Ofelt theories. J. Alloys Compd. 2004, 380, 167–172. [Google Scholar] [CrossRef]
- Sojka, L.; Tang, Z.; Furniss, D.; Sakr, H.; Oladeji, A.; Beres-Pawlik, E.; Dantanarayana, H.; Faber, E.; Seddon, A.B.; Benson, T.M.; et al. Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad. Opt. Mater. 2014, 36, 1076–1082. [Google Scholar] [CrossRef]
- Sardar, D.K.; Russell, C.C., III. Optical transitions, absorption intensities, and intermanifold emission cross sections of Pr3+(4f2) in Ca5(PO4)3F crystal host. Appl. Phys. 2004, 95, 10. [Google Scholar] [CrossRef]
- Mazurak, Z.; Bodyl, S.; Lisiecki, R.; Gabrys-Pisarska, J.; Czaja, M. Optical properties of Pr3+, Sm3+ and Wr3+ doped P2O5–CaO–SrO–BaO phosphate glass. Opt. Mater. 2010, 32, 547–553. [Google Scholar] [CrossRef]
- Hegde, V.; Dwaraka Viswanath, C.S.; Chauhan, N.; Mahato, K.K.; Kamath, S.D. Photoluminescence and thermally stimulated luminescence properties of Pr3+-doped zinc sodium bismuth borate glasses. Opt. Mater. 2018, 84, 268–277. [Google Scholar] [CrossRef]
- Herrera, A.; Jacinto, C.; Becerra, A.R.; Franzen, P.L.; Balzaretti, N.M. Multichannel emission from Pr3+ doped heavy-metal oxide glass B2O3–PbO–GeO2–Bi2O3 for broadband signal amplification. J. Lumin. 2016, 180, 341–347. [Google Scholar] [CrossRef]
- Klimesz, B.; Dominiak-Dzik, G.; Zelechower, M.; Ryba-Romanowski, W.J. Optical study of GeO2-PbO-PbF2 oxyfluoride glass singly doped with Pr3+, Nd3+, Sm3+ and Eu3+. J. Alloys Compd. 2005, 403, 76–85. [Google Scholar] [CrossRef]
- Kaminskii, A.A. Crystalline Lasers: Physical Processes and Operating Schemes; CRC Press: New York, NY, USA, 1996; 296p. [Google Scholar]
- Oliveira, A.S.; Gouveia, E.A.; De Araujo, M.T.; Gouveia-Neto, A.S.; De Araujo, C.B.; Messaddeq, Y. Twentyfold blue upcon-version emission enhancement through thermal effects in Pr3+/Yb3+-co-doped fluoroindate glasses excited at 1.064 µm. J. Appl. Phys. 2000, 87, 4274–4278. [Google Scholar] [CrossRef] [Green Version]
- Shojiya, M.; Kawamoto, Y.; Kadono, K. Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass. J. Appl. Phys. 2001, 89, 4944–4950. [Google Scholar] [CrossRef]
- Naresh, V.; Ham, B.S. Influence of multiphonon and cross relaxations on 3P0 and 1D2 emission levels of Pr3+ doped borosilicate glasses for broad band signal amplification. J. Alloys Compd. 2016, 664, 321–330. [Google Scholar] [CrossRef]
- Lei, W.H.; Chen, B.J.; Zhang, X.L.; Pun, E.Y.B.; Lin, H. Optical evaluation on Nd(3+)-doped phosphate glasses for O-band amplification. Appl. Opt. 2011, 50, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.C.; Wang, R.F.; Yang, Z.W.; Song, Z.G.; Yin, Z.Y.; Qiu, J.B. Spectroscopic properties of Tm3+ doped TeO2-R2O-La2O3 glasses for 1.47 μm optical amplifiers. J. Non-Cryst. Solids 2011, 357, 2409–2412. [Google Scholar] [CrossRef]
λ (nm) | ν (cm−1) | ||U2||2 | ||U4||2 | ||U6||2 | Γ (nm·cm−1) | Sexp (10−24 m2) | Scal (10−24 m2) | |
---|---|---|---|---|---|---|---|---|
3H4 → 3P2 | 445 | 22471 | 0 | 0.0362 | 0.1355 | 19.11 | 0.54705 | 0.30554 |
3P1 | 462 | 21652 | 0 | 0.1707 | 0 | 7.51 | 0.20720 | 0.28026 |
3P0 | 476 | 21012 | 0 | 0.1728 | 0 | 14.61 | 0.39129 | 0.28371 |
1D2 | 590 | 16956 | 0.0026 | 0.017 | 0.052 | 10.31 | 0.22271 | 0.12241 |
3F3 | 1541 | 6490 | 0.0654 | 0.3469 | 0.6983 | 215.68 | 1.78360 | 1.83910 |
3F2 | 1958 | 5106 | 0.5089 | 0.4032 | 0.1177 | 137.06 | 0.89182 | 0.88521 |
System | Ω2 | Ω4 | Ω6 | Trend | χ |
---|---|---|---|---|---|
PZLBPr [Present Work]: | 0.018 | 1.641 | 1.816 | Ω2 < Ω4 < Ω6 | 0.90 |
PPbKANPr0.5 [19] | 1.51 | 18.03 | 19.81 | Ω2 < Ω4 < Ω6 | 0.91 |
Phosphate [49] | 4.19 | 4.29 | 6.40 | Ω2 < Ω4 < Ω6 | 0.67 |
ZNBBP [50] | 1.7 | 3.06 | 4.72 | Ω2 < Ω4 < Ω6 | 0.64 |
BPGBPr [51] | 0.70 | 2.96 | 7.03 | Ω2 < Ω4 < Ω6 | 0.42 |
Oxyfluoride [52] | 0.66 | 12.49 | 3.17 | Ω2 < Ω6 < Ω4 | 3.94 |
Ca5(PO4)3F [48] | 0.32 | 1.59 | 3.82 | Ω2 < Ω4 < Ω6 | 0.41 |
LaF3 [53] | 0.12 | 1.77 | 4.78 | Ω2 < Ω4 < Ω6 | 0.37 |
LiPrP4O12 [53] | 1.82 | 2.83 | 6.54 | Ω2 < Ω4 < Ω6 | 0.43 |
YAlO3 [53] | 2.00 | 6.00 | 7.00 | Ω2 < Ω4 < Ω6 | 0.85 |
LiYF4 [53] | 0.00 | 8.07 | 7.32 | Ω2 < Ω6 < Ω4 | 1.10 |
Oxy–Fluoride [21] | 0.13 | 4.09 | 6.33 | Ω2 < Ω4 < Ω6 | 0.64 |
TPA(n = cst) [38] | 0.48 | 1.39 | 13.5 | Ω2 < Ω4 < Ω6 | 0.10 |
TPA (n ≠ cst) [38] | 0.92 | 1.85 | 6.61 | Ω2 < Ω4 < Ω6 | 0.27 |
TeO2-Li2CO3-Pr2O3 [38] | 3.81 | 5.81 | 4.1 | Ω2 < Ω6 < Ω4 | 1.41 |
PTBPr [43] | 3.07 | 3.36 | 8.68 | Ω2 < Ω6 < Ω4 | 0.38 |
Transition | Wavelength (nm) | A (s−1) | τ (ms) | β (%) | |
---|---|---|---|---|---|
3P2 → | 3H4 | 431.77 | 4393.6 | 0.040 | 17.6 |
3H5 | 476.0 | 5891.9 | 23.7 | ||
3H6 | 532.72 | 7053.9 | 28.3 | ||
3F2 | 550.54 | 3420.7 | 13.7 | ||
3F3 | 597.18 | 2776.2 | 11.1 | ||
3F4 | 613.28 | 1078.3 | 4.3 | ||
1G4 | 755.32 | 268.29 | 1.1 | ||
1D2 | 1716.4 | 26.99 | 0.1 | ||
3P0 | 5647.2 | 0.023 | 0.0 | ||
3P1 | 8671.9 | 0.013 | 0.0 | ||
3P1 → | 3H4 | 454.39 | 5762.6 | 0.076 | 43.9 |
3H5 | 503.64 | 0 | 0.0 | ||
3H6 | 567.59 | 1391.1 | 10.6 | ||
3F2 | 587.86 | 47.37 | 0.4 | ||
3F3 | 641.35 | 2435.6 | 18.6 | ||
3F4 | 659.95 | 3141.5 | 24.0 | ||
1G4 | 827.39 | 338.42 | 2.6 | ||
1D2 | 2139.9 | 0.2739 | 0.0 | ||
3P0 | 16190 | 0 | 0.0 | ||
3P0 → | 3H4 | 467.51 | 16068 | 0.041 | 67.4 |
3H5 | 519.81 | 150.98 | 0.6 | ||
3H6 | 588.21 | 3329.6 | 14.0 | ||
3F2 | 610.01 | 139.41 | 0.6 | ||
3F3 | 667.80 | 0.00 | 0.0 | ||
3F4 | 687.99 | 3539.2 | 14.8 | ||
1G4 | 871.95 | 609.13 | 2.6 | ||
1D2 | 2465.8 | 0.10 | 0.0 | ||
1D2 → | 3H4 | 576.89 | 737.95 | 0.147 | 47.8 |
3H5 | 658.66 | 14.84 | 1.0 | ||
3H6 | 772.48 | 294.00 | 19.1 | ||
3F2 | 810.52 | 291.04 | 18.9 | ||
3F3 | 915.82 | 42.40 | 2.7 | ||
3F4 | 954.23 | 49.17 | 3.2 | ||
1G4 | 1349.0 | 113.84 | 7.4 | ||
1G4 → | 3H4 | 1007.9 | 18.33 | 3.096 | 5.7 |
3H5 | 1287.1 | 218.72 | 67.7 | ||
3H6 | 1807.6 | 71.32 | 22.1 | ||
3F2 | 2030.6 | 2.19 | 0.7 | ||
3F3 | 2852.3 | 2.42 | 0.7 | ||
3F4 | 3261.1 | 9.96 | 3.1 | ||
3F4 → | 3H4 | 1458.8 | 199.48 | 4.995 | 99.7 |
3H5 | 2126.5 | 0.00 | 0.0 | ||
3H6 | 4055.7 | 0.00 | 0.0 | ||
3F2 | 5381.7 | 0.69 | 0.3 | ||
3F3 | 22,753.0 | 0.01 | 0.0 | ||
3F3 → | 3H4 | 1558.8 | 401.43 | 2.489 | 99.9 |
3H5 | 2345.7 | 0.00 | 0.0 | ||
3H6 | 4935.5 | 0.00 | 0.0 | ||
3F2 | 7049.1 | 0.20 | 0.01 | ||
3F2 → | 3H4 | 2001.4 | 127.81 | 7.823 | 100 |
3H5 | 3515.5 | 0.00 | 0.0 | ||
3H6 | 16,460.0 | 0.00 | 0.0 | ||
3H6 → | 3H4 | 2278.4 | 11.59 | 86.286 | 100 |
3H5 | 4470.3 | 0.00 | 0.0 | ||
3H5 → | 3H4 | 4646.6 | 0.00 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charfi, B.; Damak, K.; Maâlej, R.; Alqahtani, M.S.; Hussein, K.I.; Alshehri, A.M.; Hussain, A.M.; Burtan-Gwizdala, B.; Reben, M.; Yousef, E.S. Enhancement of Optical Telecommunication Bands: Pr3+-Doped Halide Phosphate Glasses Display Broadband NIR Photoluminescence Emission. Materials 2022, 15, 6518. https://doi.org/10.3390/ma15196518
Charfi B, Damak K, Maâlej R, Alqahtani MS, Hussein KI, Alshehri AM, Hussain AM, Burtan-Gwizdala B, Reben M, Yousef ES. Enhancement of Optical Telecommunication Bands: Pr3+-Doped Halide Phosphate Glasses Display Broadband NIR Photoluminescence Emission. Materials. 2022; 15(19):6518. https://doi.org/10.3390/ma15196518
Chicago/Turabian StyleCharfi, Bilel, Kamel Damak, Ramzi Maâlej, Mohammed S. Alqahtani, Khalid I. Hussein, Ali M. Alshehri, Abdulrahman M. Hussain, Bozena Burtan-Gwizdala, Manuela Reben, and El Sayed Yousef. 2022. "Enhancement of Optical Telecommunication Bands: Pr3+-Doped Halide Phosphate Glasses Display Broadband NIR Photoluminescence Emission" Materials 15, no. 19: 6518. https://doi.org/10.3390/ma15196518
APA StyleCharfi, B., Damak, K., Maâlej, R., Alqahtani, M. S., Hussein, K. I., Alshehri, A. M., Hussain, A. M., Burtan-Gwizdala, B., Reben, M., & Yousef, E. S. (2022). Enhancement of Optical Telecommunication Bands: Pr3+-Doped Halide Phosphate Glasses Display Broadband NIR Photoluminescence Emission. Materials, 15(19), 6518. https://doi.org/10.3390/ma15196518