Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems—A Preliminary Study with Finite Element Method
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilhan, H.; Kutay, O.; Arat, S.; Cekici, A.; Cehreli, M.C. Astra Tech, Brånemark, and ITI implants in the rehabilitation of partial edentulism: Two-year results. Implant Dent. 2010, 19, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Lemos, C.A.; Ferro-Alves, M.L.; Okamoto, R.; Mendonça, M.R.; Pellizzer, E.P. Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis. J. Dent. 2016, 47, 8–17. [Google Scholar] [PubMed]
- Jarman, J.M.; Hamalian, T.; Randi, A.P. Comparing the fracture resistance of alternatively engineered zirconia abutments with original equipment manufactured abutments with different implant connection designs. Int. J. Oral Maxillofac. Implant. 2017, 2, 992–1000. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wu, Y.L.; Tsai, M.H.; Chen, H.S.; Chang, Y.T.; Lin, T.T.; Wu, A.Y. Biomechanical effects of original equipment manufacturer and aftermarket abutment screws in zirconia abutment on dental implant assembly. Sci. Rep. 2020, 10, 18406. [Google Scholar] [PubMed]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Reasons for failures of oral implants. J. Oral Rehabil. 2014, 41, 443–476. [Google Scholar]
- Laurell, L.; Lundgren, D. Marginal bone level changes at dental implants after 5 years in function: A meta-analysis. Clin. Implant Dent. Relat. Res. 2011, 13, 19–28. [Google Scholar] [CrossRef]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
- Rodríguez-Ciurana, X.; Vela-Nebot, X.; Segalà-Torres, M.; Rodado-Alonso, C.; Méndez-Blanco, V.; Mata-Bugueroles, M. Biomechanical repercussions of bone resorption related to biologic width: A finite element analysis of three implant-abutment configurations. Int. J. Periodontics Restor. Dent. 2009, 29, 479–487. [Google Scholar]
- Gehrke, S.A.; Souza Dos Santos Vianna, M.; Dedavid, B.A. Influence of bone insertion level of the implant on the fracture strength of different connection designs: An in vitro study. Clin. Oral Investig. 2014, 18, 715–720. [Google Scholar] [CrossRef]
- Patterson, E.A.; Johns, R.B. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int. J. Oral Maxillofac. Implant. 1992, 7, 26–33. [Google Scholar]
- Pjetursson, B.E.; Bragger, U.; Lang, N.P.; Zwahlen, M. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin. Oral Implant. Res. 2007, 18, 97–113. [Google Scholar]
- Tsuge, T.; Hagiwara, Y. Influence of lateral-oblique cyclic loading on abutment screw loosening of internal and external hexagon implants. Dent. Mater. J. 2009, 28, 373–381. [Google Scholar] [PubMed]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Tang, C.B.; Liul, S.Y.; Zhou, G.X.; Yu, J.H.; Zhang, G.D.; Bao, Y.D.; Wang, Q.J. Nonlinear finite element analysis of three implant-abutment interface designs. Int. J. Oral Sci. 2012, 4, 101–108. [Google Scholar] [PubMed]
- Kitamura, E.; Stegaroiu, R.; Nomura, S.; Miyakawa, O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: Considerations based on a three-dimensional finite element analysis. Clin. Oral Implant. Res. 2004, 15, 401–412. [Google Scholar]
- Yenigun, S.; Ercal, P.; Ozden-Yenigun, E.; Katiboglu, A.B. Influence of Abutment Design on Stress Distribution in Narrow Implants with Marginal Bone Loss: A Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2021, 36, 640–649. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Akca, K.; Iplikcioglu, H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int. J. Oral Maxillofac. Implant. 2001, 16, 722–730. [Google Scholar]
- Teixeira, E.R.; Sato, Y.; Akagawa, Y.; Shindoi, N. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J. Oral Rehabil. 1998, 25, 299–303. [Google Scholar] [CrossRef]
- Pierrisnard, L.; Hure, G.; Barquins, M.; Chappard, D. Two dental implants designed for immediate loading: A finite element analysis. Int. J. Oral Maxillofac. Implant. 2002, 17, 353–362. [Google Scholar]
- Alkan, I.; Sertgoz, A.; Ekici, B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J. Prosthet. Dent. 2004, 91, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.A.; Bishop, N.E.; Götzen, N.; Sprecher, C.; Honl, M.; Morlock, M.M. Artificial composite bone as a model of human trabecular bone: The implant-bone interface. J. Biomech. 2007, 40, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Cai, Z.B.; Zhou, Z.R.; Zhu, M.H. Fretting behavior of cortical bone against titanium and its alloy. Wear 2005, 259, 910–918. [Google Scholar]
- Kawaguchi, T.; Kawata, T.; Kuriyagawa, T.; Sasaki, K. In vivo 3-dimensional measurement of the force exerted on a tooth during clenching. J. Biomech. 2007, 40, 244–251. [Google Scholar] [PubMed]
- Chang, Y.T.; Wu, Y.L.; Chen, H.S.; Tsai, M.H.; Chang, C.C.; Wu, A.Y. Comparing the Fracture Resistance and Modes of Failure in Different Types of CAD/CAM Zirconia Abutments with Internal Hexagonal Implants: An In Vitro Study. Materials 2022, 15, 2656. [Google Scholar] [CrossRef]
- Gigandet, M.; Bigolin, G.; Faoro, F.; Bürgin, W.; Brägger, U. Implants with original and non-original abutment connections. Clin. Implant Dent. Relat. Res. 2014, 16, 303–311. [Google Scholar]
- Rizvi, N.; Alyahya, Y.; Rizvi, A.; Narvekar, U.; Petridis, H. Accuracy of Original vs. Non-Original Abutments Using Various Connection Geometries for Single Unit Restorations: A Systematic Review. J. Prosthodont. 2021, 5, e21–e52. [Google Scholar]
- Asgeirsson, A.G.; Sailer, I.; Gamper, F.; Jung, R.E.; Hämmerle, C.H.F.; Thoma, D.S. Veneered zirconia abutments cemented on non-original titanium bases: 1-year results of a prospective case series. Clin. Oral Implant. Res. 2019, 30, 735–744. [Google Scholar] [CrossRef]
- Stucki, L.; Asgeirsson, A.G.; Jung, R.E.; Sailer, I.; Hämmerle, C.H.; Thoma, D.S. Zirconia reconstructions cemented on non-original titanium bases may result in increased bleeding on probing, probing depth values and varying mean marginal bone levels. Int. J. Prosthodont. 2021, 34, 560–566. [Google Scholar] [CrossRef]
- Strauss, F.J.; Siegenthaler, M.; Hämmerle, C.H.F.; Sailer, I.; Jung, R.E.; Thoma, D.S. Restorative angle of zirconia restorations cemented on non-original titanium bases influences the initial marginal bone loss: 5-year results of a prospective cohort study. Clin. Oral Implant. Res. 2022, 33, 745–756. [Google Scholar] [CrossRef]
- Alonso-Pérez, R.; Bartolomé, J.F.; Ferreiroa, A.; Salido, M.P.; Pradíes, G. Original vs. non-original abutments for screw-retained single implant crowns: An in vitro evaluation of internal fit, mechanical behaviour and screw loosening. Clin. Oral Implant. Res. 2018, 29, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.W.; Wei, P.C.; Chen, Y.L.; Liou, E.J. Retrospective and Clinical Evaluation of Aftermarket CAD/CAM Titanium Abutments Supporting Posterior Splinted Prostheses and Single Crowns. Int. J. Oral Maxillofac. Implant. 2019, 34, 1161–1168. [Google Scholar] [CrossRef]
- Dreyer, H.; Grischke, J.; Tiede, C.; Eberhard, J.; Schweitzer, A.; Toikkanen, S.E.; Glöckner, S.; Krause, G.; Stiesch, M. Epidemiology and risk factors of peri-implantitis: A systematic review. J. Periodontal Res. 2018, 53, 657–681. [Google Scholar] [PubMed]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S246–S266. [Google Scholar]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S286–S291. [Google Scholar]
- Simonis, P.; Dufour, T.; Tenenbaum, H. Long-term implant survival and success: A 10–16-year follow-up of nonsubmerged dental implants. Clin. Oral Implant. Res. 2010, 21, 772–777. [Google Scholar] [CrossRef]
- Koldsland, O.C.; Scheie, A.A.; Aass, A.M. Prevalence of periimplantitis related to severity of the disease with different degrees of bone loss. J. Periodontol. 2010, 81, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Roos-Jansaker, A.M.; Lindahl, C.; Renvert, H.; Renvert, S. Nineto fourteen-year follow-up of implant treatment. Part II: Presence of peri-implant lesions. J. Clin. Periodontol. 2006, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Aljateeli, M.; Fu, J.H.; Wang, H.L. Managing peri-implant bone loss: Current understanding. Clin. Implant Dent. Relat. Res. 2012, 14 (Suppl. S1), e109–e118. [Google Scholar]
- Meijer, H.J.; Raghoebar, G.M.; Van’t Hof, M.A. Comparison of implant-retained mandibular overdentures and conventional complete dentures: A 10-year prospective study of clinical aspects and patient satisfaction. Int. J. Oral Maxillofac. Implant. 2003, 18, 879–885. [Google Scholar]
- Jepsen, S.; Berglundh, T.; Genco, R.; Aass, A.M.; Demirel, K.; Derks, J.; Figuero, E.; Giovannoli, J.L.; Goldstein, M.; Lambert, F.; et al. Primary prevention of peri-implantitis: Managing peri-implant mucositis. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S152–S157. [Google Scholar] [CrossRef] [PubMed]
- Lemos, C.A.A.; Verri, F.R.; Noritomi, P.Y.; Kemmoku, D.T.; Souza Batista, V.E.; Cruz, R.S.; de Luna Gomes, J.M.; Pellizzer, E.P. Effect of bone quality and bone loss level around internal and external connection implants: A finite element analysis study. J. Prosthet. Dent. 2021, 125, 137.e1–137.e10. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pevida, E.; Chávarri-Prado, D.; Diéguez-Pereira, M.; Estrada-Martínez, A.; Montalbán-Vadillo, O.; Jiménez-Garrudo, A. Consequences of Peri-Implant Bone Loss in the Occlusal Load Transfer to the Supporting Bone in terms of Magnitude of Stress; Strain, and Stress Distribution: A Finite Element Analysis. BioMed. Res. Int. 2021, 2021, 3087071. [Google Scholar] [CrossRef] [PubMed]
- Tsouknidas, A.; Lympoudi, E.; Michalakis, K.; Giannopoulos, D.; Michailidis, N.; Pissiotis, A.; Fytanidis, D.; Kugiumtzis, D. Influence of alveolar bone loss and different alloys on the biomechanical behavior of internal-and external-connection implants: A three-dimensional finite element analysis. Int. J. Oral Maxillofac. Implant. 2015, 30, e30–e42. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.H.; Kim, S.G.; Lee, J.H.; Suh, S.W. 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss. Implant Dent. 2011, 20, 354–359. [Google Scholar] [CrossRef]
Models | Screw | Bone Tissue Level | Elements |
Model 1 | OEM screw | No bone loss | 110,313 |
Model 2 | OEM screw | 3 mm bone loss | 124,689 |
Model 3 | Aftermarket screw | No bone loss | 113,294 |
Model 4 | Aftermarket screw | 3 mm bone loss | 118,390 |
Material | Young’s Modulus/GPa | Poisson’s Ratio | Yield Strength/MPa | Reference |
Cortical bone | 13.4 | 0.30 | - | Akca et al. [18] |
Cancellous bone | 1.37 | 0.30 | - | Akca et al. [18] |
Titanium implant | 115 | 0.35 | 680 | Teixera et al. [19] |
Titanium alloys (screw, abutment) | 110 | 0.33 | 795 | Pierrisnard et al. [20] |
Model | Part | Material | Max. Stresses/MPa | Yield Strength/MPa | Compliance with the Strength Conditions |
1 | Abutment | Titanium alloy | 421.74 | 795 | YES |
Screw | Titanium alloy | 529.64 | 795 | YES | |
Implant | Titanium | 588.78 | 680 | YES | |
2 | Abutment | Titanium alloy | 512.56 | 795 | YES |
Screw | Titanium alloy | 642.87 | 795 | YES | |
Implant | Titanium | 892.08 | 680 | NO | |
3 | Abutment | Titanium alloy | 443.53 | 795 | YES |
Screw | Titanium alloy | 563.12 | 795 | YES | |
Implant | Titanium | 594.86 | 680 | YES | |
4 | Abutment | Titanium alloy | 561.82 | 795 | YES |
Screw | Titanium alloy | 710.39 | 795 | YES | |
Implant | Titanium | 904.18 | 680 | NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-L.; Tsai, M.-H.; Chen, H.-S.; Lin, C.-P.; Wu, A.Y.-J. Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems—A Preliminary Study with Finite Element Method. Materials 2022, 15, 5952. https://doi.org/10.3390/ma15175952
Wu Y-L, Tsai M-H, Chen H-S, Lin C-P, Wu AY-J. Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems—A Preliminary Study with Finite Element Method. Materials. 2022; 15(17):5952. https://doi.org/10.3390/ma15175952
Chicago/Turabian StyleWu, Yu-Ling, Ming-Hsu Tsai, Hung-Shyong Chen, Ching-Ping Lin, and Aaron Yu-Jen Wu. 2022. "Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems—A Preliminary Study with Finite Element Method" Materials 15, no. 17: 5952. https://doi.org/10.3390/ma15175952
APA StyleWu, Y.-L., Tsai, M.-H., Chen, H.-S., Lin, C.-P., & Wu, A. Y.-J. (2022). Effect of Marginal Bone Integrity and Aftermarket Abutment Screws on Dental Implant Systems—A Preliminary Study with Finite Element Method. Materials, 15(17), 5952. https://doi.org/10.3390/ma15175952