Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature
Abstract
:1. Introduction
- It should be biocompatible and biodegradable
- The adhesive application should be as simple as possible
- The adhesive curing process should be relatively short
- Mechanical strength, cohesion, and adhesion in a humid environment should be appropriate for the specific application
- The adhesive should not cause an inflammatory reaction with large swelling
- The adhesive should be durable and stable
- Production costs must be economically viable
2. Natural Adhesives
2.1. Fibrin Adhesives
2.2. Collagen Adhesives
2.3. Gelatin-Based Adhesives
2.4. Chitosan-Based Adhesives
2.5. Chondroitin Sulfate-Based Adhesives
3. Synthetic Adhesives
3.1. Cyanoacrylate Adhesives
- -
- Hydrophilicity, good spreading in living tissue;
- -
- Lower heat generation during polymerization, which helps avoid tissue necrosis;
- -
- Better mechanical properties (especially elasticity and cosmetic results);
- -
- Lesser toxicity—their degradation products can be metabolized and removed from the body.
3.2. PEG Polyethylene Glycol-Based Adhesives
3.3. Urethane-Based Adhesives
3.4. Biomimetic Adhesives
4. Stem Cells in Medical Adhesive Application
5. Discussion
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onusseit, H. Praxiswissen Klebtechnik: Band 1: Grundlagen; Beuth: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Brockmann, W. Adhesive Bonding: Materials, Applications and Technology; Wiley-VCH: Weinheim, Germany, 2009; ISBN 978-3-527-62393-8. [Google Scholar]
- Park, K.H.; Seong, K.Y.; Yang, S.Y.; Seo, S. Advances in medical adhesives inspired by aquatic organisms’ adhesion. Biomater. Res. 2017, 21, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, L.; Chen, S. Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers 2020, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Annabi, N.; Tamayol, A.; Shin, S.R.; Ghaemmaghami, A.M.; Peppas, N.A.; Khademhosseini, A. Surgical Materials: Current Challenges and Nano-enabled Solutions. Nano Today 2014, 9, 574–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bré, L.P.; Zheng, Y.; Pêgo, A.P.; Wang, W. Taking tissue adhesives to the future: From traditional synthetic to new biomimetic approaches. Biomater. Sci. 2013, 1, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Bouten, P.J.M.; Zonjee, M.; Bender, J.; Yauw, S.T.K.; Van Goor, H.; Van Hest, J.C.M.; Hoogenboom, R. The chemistry of tissue adhesive materials. Prog. Polym. Sci. 2014, 7, 1375–1405. [Google Scholar] [CrossRef]
- García Páez, J.M.; Jorge Herrero, E.; Rocha, A.; Maestro, M.; Castillo-Olivares, J.L.; Millan, I.; Carrera Sanmartin, A.; Cordon, A. Comparative study of the mechanical behaviour of a cyanoacrylate and a bioadhesive. J. Mater. Sci. Mater. Med. 2004, 15, 109–115. [Google Scholar] [CrossRef]
- Beckman, E.J.; Buckley, M.; Agarwal, S.; Zhang, J. Medical Adhesive and Methods of Tissue Adhesion. U.S. Patent 7264823, 4 September 2007. [Google Scholar]
- Kull, S.; Martinelli, I.; Briganti, E.; Losi, P.; Spiller, D.; Tonlorenzi, S.; Soldani, G. Glubran2 surgical glue: In vitro evaluation of adhesive and mechanical properties. J. Surg. Res. 2009, 157, e15–e21. [Google Scholar] [CrossRef]
- Lauto, A.; Mawad, D.; Foster, L.J.R. Adhesive biomaterials for tissue reconstruction. J. Chem. Technol. Biotechnol. 2008, 83, 464–472. [Google Scholar] [CrossRef]
- Sharma, B.; Fermanian, S.; Gibson, M.; Unterman, S.; Herzka, D.A.; Cascio, B.; Coburn, J.; Hui, A.Y.; Marcus, N.; Gold, G.E.; et al. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci. Transl. Med. 2013, 5, 167ra6. [Google Scholar] [CrossRef] [Green Version]
- Gittens, R.A.; Olivares-Navarrete, R.; Schwartz, Z.; Boyan, B.D. Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomater. 2014, 10, 3363–3371. [Google Scholar] [CrossRef] [Green Version]
- Avila, G.; Misch, K.; Galindo-Moreno, P.; Wang, H.L. Implant surface treatment using biomimetic agents. Implant Dent. 2009, 18, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.P.; Hunziker, E.B.; De Groot, K. Incorporation of growth factors into medical devices via biomimetic coatings. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2005, 364, 233–248. [Google Scholar] [CrossRef]
- Richards, R.G.; Moriarty, T.F.; Miclau, T.; McClellan, R.T.; Grainger, D.W. Advances in biomaterials and surface technologies. J. Orthop. Trauma 2012, 26, 703–707. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, H.; Kocabey, S.; Unal Gulsuner, H.; Balcik, O.S.; Guler, M.O.; Tekinay, A.B. Bone-like mineral nucleating peptide nanofibers induce differentiation of human mesenchymal stem cells into mature osteoblasts. Biomacromolecules 2014, 15, 2407–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.M.; Hwang, N.S.; Yeom, J.; Park, S.Y.; Messersmith, P.B.; Choi, I.S.; Langer, R.; Anderson, D.G.; Lee, H. One-Step Multipurpose Surface Functionalization by Adhesive Catecholamine. Adv. Funct. Mater. 2012, 22, 2949–2955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reece, T.B.; Maxey, T.S.; Kron, I.L. A prospectus on tissue adhesives. Am. J. Surg. 2001, 182, S40–S44. [Google Scholar] [CrossRef]
- Portilla-de Buen, E.; Orozco-Mosqueda, A.; Leal-Cortés, C.; Vázquez-Camacho, G.; Fuentes-Orozco, C.; Alvarez-Villaseñor, A.S.; Macías-Amezcua, M.D.; González-Ojeda, A. Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses. Clinics 2014, 69, 259–264. [Google Scholar] [CrossRef]
- Spotnitz, W.D.; Dalton, M.S.; Baker, J.W.; Nolan, S.P. Reduction of perioperative hemorrhage by anterior mediastinal spray application of fibrin glue during cardiac operations. Ann. Thorac. Surg. 1987, 44, 529–531. [Google Scholar] [CrossRef]
- Borst, H.G.; Haverich, A.; Walterbusch, G.; Maatz, W. Fibrin adhesive: An important hemostatic adjunct in cardiovascular operations. J. Thorac. Cardiovasc. Surg. 1982, 84, 548–553. [Google Scholar] [CrossRef]
- Séguin, J.R.; Picard, E.; Frapier, J.M.; Chaptal, P.A. Aortic valve repair with fibrin glue for type A acute aortic dissection. Ann. Thorac. Surg. 1994, 58, 304–307. [Google Scholar] [CrossRef]
- Saltz, R. Tissue Glues in Cosmetic Surgery; Dean, T., Ed.; Thieme Medical Publishers Inc.: Leipzig, Germany, 2004; ISBN 1576261743. [Google Scholar]
- Quinn, J.V. Tissue Adhesives in Clinical Medicine; PMPH USA, Ltd.: Shelton, CT, USA, 2005; p. 183. [Google Scholar]
- Spotnitz, W.D.; Falstrom, J.K.; Rodeheaver, G.T. The role of sutures and fibrin sealant in wound healing. Surg. Clin. N. Am. 1997, 77, 651–669. [Google Scholar] [CrossRef]
- Schenk, W.G.; Burks, S.G.; Gagne, P.J.; Kagan, S.A.; Lawson, J.H.; Spotnitz, W.D. Fibrin sealant improves hemostasis in peripheral vascular surgery: A randomized prospective trial. Ann. Surg. 2003, 237, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.C.; Ferreira, R.S.; Barraviera, S.R.C.S.; Stolf, H.O.; Thomazini-Santos, I.A.; Mendes-Giannini, M.J.S.; Toscano, E.; Barraviera, B. A new fibrin sealant from crotalus durissus terrificus venom: Applications in medicine. J. Toxicol. Environ. Health Part B Crit. Rev. 2009, 12, 553–571. [Google Scholar] [CrossRef] [PubMed]
- Wax, M.K.; Ramadan, H.H.; Ortiz, O.; Wetmore, S.J. Contemporary management of cerebrospinal fluid rhinorrhea. Otolaryngol. Head. Neck Surg. 1997, 116, 442–449. [Google Scholar] [CrossRef]
- Strausberg, R.L.; Link, R.P. Protein-based medical adhesives. Trends Biotechnol. 1990, 8, 53–57. [Google Scholar] [CrossRef]
- Sawamura, Y.; Asaoka, K.; Terasaka, S.; Tada, M.; Uchida, T. Evaluation of application techniques of fibrin sealant to prevent cerebrospinal fluid leakage: A new device for the application of aerosolized fibrin glue. Neurosurgery 1999, 44, 332–337. [Google Scholar] [CrossRef]
- Shaffrey, C.I.; Spotnitz, W.D.; Shaffrey, M.E.; Jane, J.A.; Laws, E.R.; Sekhar, L.N.; Al-Mefty, O. Neurosurgical Applications of Fibrin Glue: Augmentation of Dural Closure in 134 Patients. Neurosurgery 1990, 26, 207–210. [Google Scholar] [CrossRef]
- Stuart, J.D.; Kenney, J.G.; Lettieri, J.; Spotnitz, W.; Baker, J. Application of single-donor fibrin glue to burns. J. Burn Care Rehabil. 1988, 9, 619–622. [Google Scholar] [CrossRef]
- Mutignani, M.; Iacopini, F.; Dokas, S.; Larghi, A.; Familiari, P.; Tringali, A.; Costamagna, G. Successful endoscopic closure of a lateral duodenal perforation at ERCP with fibrin glue. Gastrointest. Endosc. 2006, 63, 725–727. [Google Scholar] [CrossRef]
- Chandra, P.; Phalgune, D.; Shah, S. Comparison of the Clinical Outcome and Complications in Laparoscopic Hernia Repair of Inguinal Hernia With Mesh Fixation Using Fibrin Glue vs Tacker. Indian J. Surg. 2016, 78, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Ferrarese, A.; Marola, S.; Surace, A.; Borello, A.; Bindi, M.; Cumbo, J.; Solej, M.; Enrico, S.; Nano, M.; Martino, V. Fibrin glue versus stapler fixation in laparoscopic transabdominal inguinal hernia repair: A single center 5-year experience and analysis of the results in the elderly. Int. J. Surg. 2014, 12 (Suppl. S2), S94–S98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Zhang, Q.; Song, W.; Zhou, D.; He, Y. Clinical significance of three-dimensional skeleton-arterial model in the management of delayed reconstruction of acetabular fractures. BMC Surg. 2018, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuels, L.E.; Shaw, P.M.; Blaum, L.C. Percutaneous technique for management of persistent airspace with prolonged air leak using fibrin glue. Chest 1996, 109, 1653–1655. [Google Scholar] [CrossRef] [Green Version]
- York, E.L.; Lewall, D.B.; Hirji, M.; Gelfand, E.T.; Modry, D.L. Endoscopic diagnosis and treatment of postoperative bronchopleural fistula. Chest 1990, 97, 1390–1392. [Google Scholar] [CrossRef]
- Drovandi, L.; Cianchi, I.; Pratesi, S.; Dani, C. Fibrin glue pleurodesis for pneumothorax in extremely preterm infants: A case report and literature review. Ital. J. Pediatr. 2018, 44, 91. [Google Scholar] [CrossRef]
- Presser, N.; Kerr, H.; Gao, T.; Begala, M.; Paschal, S.; Shoskes, D.A.; Flechner, S.M. Fibrin Glue Injections: A Minimally Invasive and Cost-Effective Treatment for Post-Renal Transplant Lymphoceles and Lymph Fistulas. Am. J. Transpl. 2016, 16, 694–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregor, R.T. Management of chyle fistulization in association with neck dissection. Otolaryngol. Head. Neck Surg. 2000, 122, 434–439. [Google Scholar] [CrossRef]
- Levy, O.; Martinowitz, U.; Oran, A.; Tauber, C.; Horoszowski, H. The use of fibrin tissue adhesive to reduce blood loss and the need for blood transfusion after total knee arthroplasty. A prospective, randomized, multicenter study. J. Bone Jt. Surg. Am. 1999, 81, 1580–1588. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, T.; Liu, X.; He, Y.; Deng, L.; Guo, J.; Hua, Y.; Luo, T.; Gao, X. Improved anti-tumor efficacy via combination of oxaliplatin and fibrin glue in colorectal cancer. Oncotarget 2018, 9, 2515. [Google Scholar] [CrossRef] [Green Version]
- Koulaxouzidis, G.; Reim, G.; Witzel, C. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model. Neural Regen. Res. 2015, 10, 1166. [Google Scholar] [CrossRef]
- Jungnickel, J.; Haase, K.; Konitzer, J.; Timmer, M.; Grothe, C. Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. J. Neurobiol. 2006, 66, 940–948. [Google Scholar] [CrossRef]
- Peng, H.T.; Shek, P.N. Novel wound sealants: Biomaterials and applications. Expert Rev. Med. Devices 2010, 7, 639–659. [Google Scholar] [CrossRef]
- Scheyer, M.; Zimmermann, G. Tachocomb used in endoscopic surgery. Surg. Endosc. 1996, 10, 501–503. [Google Scholar] [CrossRef]
- Schiele, U.; Kuntz, G.; Riegler, A. Haemostyptic preparations on the basis of collagen alone and as fixed combination with fibrin glue. Clin. Mater. 1992, 9, 169–177. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kang, M.J.; Lee, H.J.; Woo, C.K.; Mun, M.J.; Cho, K.S. The efficacy of TachoComb on reducing postoperative complications after tonsillectomy in children. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1337–1340. [Google Scholar] [CrossRef]
- Horowitz, B.; Busch, M. Estimating the pathogen safety of manufactured human plasma products: Application to fibrin sealants and to thrombin. Transfusion 2008, 48, 1739. [Google Scholar] [CrossRef]
- Busuttil, R.W. A comparison of antifibrinolytic agents used in hemostatic fibrin sealants. J. Am. Coll. Surg. 2003, 197, 1021–1028. [Google Scholar] [CrossRef]
- Oswald, A.M.; Joly, L.M.; Gury, C.; Disdet, M.; Leduc, V.; Kanny, G. Fatal Intraoperative Anaphylaxis Related to Aprotinin after Local Application of Fibrin Glue. Anesthesiology 2003, 99, 762–763. [Google Scholar] [CrossRef]
- Spotnitz, W.D. Fibrin sealant: Past, present, and future: A brief review. World J. Surg. 2010, 34, 632–634. [Google Scholar] [CrossRef]
- Wheat, J.C.; Wolf, J.S. Advances in bioadhesives, tissue sealants, and hemostatic agents. Urol. Clin. N. Am. 2009, 36, 265–275. [Google Scholar] [CrossRef]
- Currie, L.J.; Sharpe, J.R.; Martin, R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: A review. Plast. Reconstr. Surg. 2001, 108, 1713–1726. [Google Scholar] [CrossRef]
- Bjork, J.W.; Johnson, S.L.; Tranquillo, R.T. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials 2011, 32, 2479–2488. [Google Scholar] [CrossRef] [Green Version]
- Farndale, R.W.; Sixma, J.J.; Barnes, M.J.; De Groot, P.G. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2004, 2, 561–573. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, J.; Wu, Y.; Jin, L.; Wang, Y.; Xu, Z. Study on the adsorption properties of multiple-generation hyperbranched collagen fibers towards isolan-series acid dyes. RSC Adv. 2022, 12, 6855–6868. [Google Scholar] [CrossRef]
- Echave, M.; Oyagöez, I.; Casado, M.A. Use of Floseal®, a human gelatine-Thrombin matrix sealant, in surgery: A systematic review. BMC Surg. 2014, 14, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryou, M.; Thompson, C.C. Tissue Adhesives: A Review. Tech. Gastrointest. Endosc. 2006, 8, 33–37. [Google Scholar] [CrossRef]
- Moldovan, H.; Antoniac, I.; Gheorghiță, D.; Safta, M.S.; Preda, S.; Broască, M.; Badilă, E.; Fronea, O.; Scafa-Udrişte, A.; Cacoveanu, M.; et al. Biomaterials as Haemostatic Agents in Cardiovascular Surgery: Review of Current Situation and Future Trends. Polymers 2022, 14, 1189. [Google Scholar] [CrossRef]
- Milkes, D.E.; Friedland, S.; Lin, O.S.; Reid, T.R.; Soetikno, R.M. A novel method to control severe upper GI bleeding from metastatic cancer with a hemostatic sealant: The CoStasis surgical hemostat. Gastrointest. Endosc. 2002, 55, 735–740. [Google Scholar] [CrossRef]
- Liu, Y.; Kopelman, D.; Wu, L.Q.; Hijji, K.; Attar, I.; Preiss-Bloom, O.; Payne, G.F. Biomimetic sealant based on gelatin and microbial transglutaminase: An initial in vivo investigation. J. Biomed. Mater. Res. 2009, 91, 5–16. [Google Scholar] [CrossRef]
- Gowda, A.H.J.; Bu, Y.; Kudina, O.; Krishna, K.V.; Bohara, R.A.; Eglin, D.; Pandit, A. Design of tunable gelatin-dopamine based bioadhesives. Int. J. Biol. Macromol. 2020, 164, 1384–1391. [Google Scholar] [CrossRef]
- Ulubayram, K.; Aksu, E.; Gurhan, S.I.D.; Serbetci, K.; Hasirci, N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J. Biomater. Sci. Polym. Ed. 2012, 13, 1203–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elvin, C.M.; Vuocolo, T.; Brownlee, A.G.; Sando, L.; Huson, M.G.; Liyou, N.E.; Stockwell, P.R.; Lyons, R.E.; Kim, M.; Edwards, G.A.; et al. A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials 2010, 31, 8323–8331. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Embree, H.D.; Brown, E.M.; Taylor, M.M.; Payne, G.F. Enzyme-catalyzed gel formation of gelatin and chitosan: Potential for in situ applications. Biomaterials 2003, 24, 2831–2841. [Google Scholar] [CrossRef]
- Chen, T.; Janjua, R.; McDermott, M.K.; Bernstein, S.L.; Steidl, S.M.; Payne, G.F. Gelatin-based biomimetic tissue adhesive. Potential for retinal reattachment. J. Biomed. Mater. Res. 2006, 77, 416–422. [Google Scholar] [CrossRef]
- Küçükaksu, D.S.; Akgül, A.; Çagli, K.; Taşdemir, O. Beneficial Effect of BioGlue® Surgical Adhesive in Repair of Iatrogenic Aortic Dissection. Texas Hear. Inst. J. 2000, 27, 307. [Google Scholar]
- Oz, M.C.; Rondinone, J.F.; Shargill, N.S. FloSeal Matrix: New generation topical hemostatic sealant. J. Card. Surg. 2003, 18, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Lipatova, T.E. Medical polymer adhesives. Adv. Polym. Sci. 1986, 79, 65–93. [Google Scholar] [CrossRef]
- Nomori, H.; Horio, H.; Suemasu, K. The efficacy and side effects of gelatin-resorcinol formaldehyde-glutaraldehyde (GRFG) glue for preventing and sealing pulmonary air leakage. Surg. Today 2000, 30, 244–248. [Google Scholar] [CrossRef]
- BioGlue Surgical Adhesive. Biomed. Saf. Stand. 2014, 44, 118. [CrossRef]
- Lee, D.I.; Uribe, C.; Eichel, L.; Khonsari, S.; Basillote, J.; Park, H.K.; Li, C.C.; McDougall, E.M.; Clayman, R.V. Sealing percutaneous nephrolithotomy tracts with gelatin matrix hemostatic sealant: Initial clinical use. J. Urol. 2004, 171, 575–578. [Google Scholar] [CrossRef]
- Nomori, H.; Horio, H.; Morinaga, S.; Suemasu, K. Gelatin-resorcinol-formaldehyde-glutaraldehyde glue for sealing pulmonary air leaks during thoracoscopic operation. Ann. Thorac. Surg. 1999, 67, 212–216. [Google Scholar] [CrossRef]
- Gregory, K. Wound Dressing and Method for Controlling Severe, Life-Threatening Bleeding. U.S. Patent US7482503B2, 14 June 2001. [Google Scholar]
- Pusateri, A.E.; Mccarthy, S.J.; Gregory, K.W.; Harris, R.A.; Cardenas, L.; Mcmanus, A.T.; Goodwin, C.W. Effect of a Chitosan-Based Hemostatic Dressing on Blood Loss and Survival in a Model of Severe Venous Hemorrhage and Hepatic Injury in Swine. J. Trauma Inj. Infect. Crit. Care 2003, 54, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Wedmore, I.; McManus, J.G.; Pusateri, A.E.; Holcomb, J.B. A special report on the chitosan-based hemostatic dressing: Experience in current combat operations. J. Trauma 2006, 60, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.A.; Daya, M.R.; Worley, J.A. Experience with Chitosan Dressings in a Civilian EMS System. J. Emerg. Med. 2009, 37, 1–7. [Google Scholar] [CrossRef]
- Celox Medical Haemostatic Dressings: Chest Seal Dressings: Cellox Haemostats. Available online: https://www.celoxmedical.com/products/ (accessed on 14 February 2022).
- Kozen, B.G.; Kircher, S.J.; Henao, J.; Godinez, F.S.; Johnson, A.S. An alternative hemostatic dressing: Comparison of CELOX, HemCon, and QuikClot. Acad. Emerg. Med. 2008, 15, 74–81. [Google Scholar] [CrossRef]
- Kheirabadi, B.S.; Edens, J.W.; Terrazas, I.B.; Estep, J.S.; Klemcke, H.G.; Dubick, M.A.; Holcomb, J.B. Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine. J. Trauma Inj. Infect. Crit. Care 2009, 66, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Klokkevold, P.R.; Fukayama, H.; Sung, E.C.; Bertolami, C.N. The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits. J. Oral Maxillofac. Surg. 1999, 57, 49–52. [Google Scholar] [CrossRef]
- Lauto, A.; Foster, L.J.; Avolio, A.; Sampson, D.; Raston, C.; Sarris, M.; McKenzie, G.; Stoodley, M. Sutureless nerve repair with laser-activated chitosan adhesive: A pilot in vivo study. Photomed. Laser Surg. 2008, 26, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Lauto, A.; Stoodley, M.; Marcel, H.; Avolio, A.; Sarris, M.; McKenzie, G.; Sampson, D.D.; Foster, L.J.R. In vitro and in vivo tissue repair with laser-activated chitosan adhesive. Lasers Surg. Med. 2007, 39, 19–27. [Google Scholar] [CrossRef]
- Ishihara, M. Photocrosslinkable Chitosan Hydrogel as a Wound Dressing and a Biological Adhesive. Trends Glycosci. Glycotechnol. 2002, 14, 331–341. [Google Scholar] [CrossRef]
- Nakayama, Y.; Matsuda, T. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate. J. Biomed. Mater. Res. 1999, 48, 511–521. [Google Scholar] [CrossRef]
- Garcia, P.; Mines, M.J.; Bower, K.S.; Hill, J.; Menon, J.; Tremblay, E.; Smith, B. Robotic laser tissue welding of sclera using chitosan films. Lasers Surg. Med. 2009, 41, 59–67. [Google Scholar] [CrossRef]
- Hoekstra, A.; Struszczyk, H.; Kivekäs, O. Percutaneous microcrystalline chitosan application for sealing arterial puncture sites. Biomaterials 1998, 19, 1467–1471. [Google Scholar] [CrossRef]
- Baeurle, S.A.; Kiselev, M.G.; Makarova, E.S.; Nogovitsin, E.A. Effect of the counterion behavior on the frictional-compressive properties of chondroitin sulfate solutions. Polymer 2009, 50, 1805–1813. [Google Scholar] [CrossRef]
- Shin, J.; Kang, E.H.; Choi, S.; Jeon, E.J.; Cho, J.H.; Kang, D.; Lee, H.; Yun, I.S.; Cho, S.W. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater. Sci. Eng. 2021, 7, 4230–4243. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.A.; Varghese, S.; Sharma, B.; Strehin, I.; Fermanian, S.; Gorham, J.; Fairbrother, D.H.; Cascio, B.; Elisseeff, J.H. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat. Mater. 2007, 6, 385–392. [Google Scholar] [CrossRef]
- Pirouzmanesh, A.; Herretes, S.; Reyes, J.M.G.; Suwan-apichon, O.; Chuck, R.S.; Wang, D.A.; Elisseeff, J.H.; Stark, W.J.; Behrens, A. Modified microkeratome-assisted posterior lamellar keratoplasty using a tissue adhesive. Arch. Ophthalmol. 2006, 124, 210–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collito, M.B. Dental Methods Employing a Cyanoacrylate. U.S. Patent US3250002A, 26 February 1962. [Google Scholar]
- Coover, H.W.; Shearer, N.H. Single-Stage Mixed Monomer Adhesive Compositions. U.S. Patent US2763585A, 8 June 1954. [Google Scholar]
- Coover, H.W.; Shearer, N.H. Adhesive Compositions Containing Alkyl esters of Cyanoacrylic Acid. U.S. Patent US2794788A, 1 November 1952. [Google Scholar]
- Coover, H.W. Living Case Histories of Innovation: Cyanoacrylate Adhesives—A Day of Serendipity, A Decade of Hard Work. Res. Manag. 1980, 23, 37–40. [Google Scholar] [CrossRef]
- Erdmann, L.; Uhrich, K.E. Synthesis and degradation characteristics of salicylic acid-derived poly (anhydride-esters). Biomaterials 2000, 21, 1941–1946. [Google Scholar] [CrossRef]
- Leonard, F.; Collins, J.A.; Porter, H.J. Interfacial polymerization of n-alkyl α-cyanoacrylate homologs. J. Appl. Polym. Sci. 1966, 10, 1617–1623. [Google Scholar] [CrossRef]
- Coover, H.W.; Dreifus, D.W.; O’Connor, J.T. Cyanoacrylate Adhesives. Handb. Adhes. 1990, 463–477. [Google Scholar] [CrossRef]
- Petrie, E.M. Cyanoacrylate adhesives in surgical applications: A critical review. Rev. Adhes. Adhes. 2014, 2, 253–310. [Google Scholar] [CrossRef]
- Mattamal, G.J. U.S. FDA Perspective on the Regulation of Cyanoacrylate Polymer Tissue Adhesives in Clinical Applications. Mater. Sci. Forum 2007, 539–543, 692–697. [Google Scholar] [CrossRef]
- Chandra, S.; Holm, A.; El Abiad, R.G.; Gerke, H. Endoscopic Cyanoacrylate Glue Injection in Management of Gastric Variceal Bleeding: US Tertiary Care Center Experience. J. Clin. Exp. Hepatol. 2018, 8, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Abdulmalak, G.; Chevallier, O.; Falvo, N.; Di Marco, L.; Bertaut, A.; Moulin, B.; Abi-Khalil, C.; Gehin, S.; Charles, P.E.; Latournerie, M.; et al. Safety and efficacy of transcatheter embolization with Glubran® 2 cyanoacrylate glue for acute arterial bleeding: A single-center experience with 104 patients. Abdom. Radiol. 2018, 43, 723–733. [Google Scholar] [CrossRef]
- Salah-Eldin Shehata, M.; Elkordy, M.; Abd-Elaal Nafe, M.; Farag Mohammed Radwan, A. Cyanoacrylate Glue Mesh Fixation versus Suture Mesh Fixation in Open Inguinal Hernia Repair. Egypt. J. Hosp. Med. 2017, 69, 2502–2511. [Google Scholar] [CrossRef]
- Nevins, M.; Mendoza-Azpur, G.; De Angelis, N.; Kim, D. The Biocompatibility of Cyanoacrylate Tissue Adhesive in Conjunction with a Collagen Membrane for Providing Soft and Hard Tissue Regeneration in Extraction Socket Preservation Procedures. Int. J. Periodontics Restor. Dent. 2018, 38, s37–s42. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.C.; Vieira-Barbosa, N.M.; Grasielle de Sá Azevedo, C.; de Matos, F.R.; Douglas de Oliveira, D.W.; de Oliveira, E.S.; Ramos-Jorge, M.L.; Gonçalves, P.F.; Flecha, O.D. Oral Health-Related Quality of Life before and after Treatment of Dentin Hypersensitivity with Cyanoacrylate and Laser. J. Periodontol. 2017, 88, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Liebelt, E.L. Current concepts in laceration repair. Curr. Opin. Pediatr. 1997, 9, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, C.; Boot, E.; Carse, N.; Clardy, A.; Gallagher, J.; Heck, S.; Marron, S.; Martinez-Alvarez, L.; Masarykova, D.; Mcmillan, P.; et al. Evaluation of skin laceration repair by tissue adhesive in the pediatric emergency room. Panminerva Med. 1992, 34, 77–80. [Google Scholar] [CrossRef]
- ADONI, A.; ANTEBY, E. The use of Histoacryl for episiotomy repair. Br. J. Obstet. Gynaecol. 1991, 98, 476–478. [Google Scholar] [CrossRef]
- Quinn, J.; Wells, G.; Sutcliffe, T.; Jarmuske, M.; Maw, J.; Stiell, L.; Johns, P. A randomized trial comparing octylcyanoacrylate tissue adhesive and sutures in the management of lacerations. J. Am. Med. Assoc. 1997, 277, 1527–1530. [Google Scholar] [CrossRef]
- Qureshi, A.; Drew, P.J.; Duthie, G.S.; Roberts, A.C.; Monson, J.R.T. n-Butyl cyanoacrylate adhesive for skin closure of abdominal wounds: Preliminary results. Ann. R. Coll. Surg. Engl. 1997, 79, 414. [Google Scholar]
- Kumar, P.; Venkatesh, V.; Chari, H. YashwanthYadav is tissue glue an alternative to sutures in impacted third molar surgeries? Indian J. Dent. Adv. 2017, 9, 8–14. [Google Scholar] [CrossRef]
- Farion, K.J.; Osmond, M.H.; Hartling, L.; Russell, K.F.; Klassen, T.P.; Crumley, E.; Wiebe, N. Tissue adhesives for traumatic lacerations: A systematic review of randomized controlled trials. Acad. Emerg. Med. 2003, 10, 110–118. [Google Scholar] [CrossRef]
- Wei, D.; Cai, J.; Yang, Y.; Zhao, T.; Zhang, H.; Zhang, C.; Zhang, Y.; Zhang, J.; Cai, F. A prospective comparison of short term results and functional recovery after laparoscopic subtotal colectomy and antiperistaltic cecorectal anastomosis with short colonic reservoir vs. long colonic reservoir. BMC Gastroenterol. 2015, 15, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanaro, L.; Arciola, C.R.; Cenni, E.; Ciapetti, G.; Savioli, F.; Filippini, F.; Barsanti, L.A. Cytotoxicity, blood compatibility and antimicrobial activity of two cyanoacrylate glues for surgical use. Biomaterials 2001, 22, 59–66. [Google Scholar] [CrossRef]
- Rushbrook, J.L.; White, G.; Kidger, L.; Marsh, P.; Taggart, T.F.O. The antibacterial effect of 2-octyl cyanoacrylate (Dermabond®) skin adhesive. J. Infect. Prev. 2014, 15, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Abenavoli, F.M. Using Dermabond. Plast. Reconstr. Surg. 2001, 108, 269. [Google Scholar] [CrossRef]
- Bartenstein, D.W.; Cummins, D.L.; Rogers, G.S. A Prospective, Randomized, Single-Blind Study Comparing Cyanoacrylate Adhesives to Sutures for Wound Closure in Skin Cancer Patients. Dermatol. Surg. 2017, 43, 1371–1378. [Google Scholar] [CrossRef]
- Martines, G.; Picciariello, A.; Dibra, R.; Trigiante, G.; Jambrenghi, O.C.; Chetta, N.; Altomare, D.F. Efficacy of cyanoacrylate in the prevention of delayed bleeding after endoscopic mucosal resection of large colorectal polyps: A pilot study. Int. J. Colorectal Dis. 2020, 35, 2141–2144. [Google Scholar] [CrossRef]
- Toriumi, D.M.; O’Grady, K.; Desai, D.; Bagal, A. Use of octyl-2-cyanoacrylate for skin closure in facial plastic surgery. Plast. Reconstr. Surg. 1998, 102, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.C.; Law, Y.; Cheung, G.C.; Ting, A.C.; Cheng, S.W. Cyanoacrylate glue used to treat great saphenous reflux: Measures of outcome. Phlebology 2017, 32, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Dragu, A.; Unglaub, F.; Schwarz, S.; Beier, J.P.; Kneser, U.; Bach, A.D.; Horch, R.E. Foreign body reaction after usage of tissue adhesives for skin closure: A case report and review of the literature. Arch. Orthop. Trauma Surg. 2009, 129, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.; Maw, J.; Ramotar, K.; Wenckebach, G.; Wells, G. Octylcyanoacrylate tissue adhesive versus suture wound repair in a contaminated wound model. Surgery 1997, 122, 69–72. [Google Scholar] [CrossRef]
- Zempsky, W.T.; Parrotti, D.; Grem, C.; Nichols, J. Randomized controlled comparison of cosmetic outcomes of simple facial lacerations closed with Steri Strip Skin Closures or Dermabond tissue adhesive. Pediatr. Emerg. Care 2004, 20, 519–524. [Google Scholar] [CrossRef]
- Bernard, L.; Doyle, J.; Friedlander, S.F.; Eichenfield, L.F.; Gibbs, N.F.; Cunningham, B.B. A prospective comparison of octyl cyanoacrylate tissue adhesive (dermabond) and suture for the closure of excisional wounds in children and adolescents. Arch. Dermatol. 2001, 137, 1177–1180. [Google Scholar] [CrossRef] [PubMed]
- Leggat, P.A.; Kedjarune, U.; Smith, D.R. Toxicity of Cyanoacrylate Adhesives and Their Occupational Impacts for Dental Staff. Ind. Health 2004, 42, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Shantha, K.L.; Thennarasu, S.; Krishnamurti, N. Developments and applications of cyanoacrylate adhesives. J. Adhes. Sci. Technol. 2012, 3, 237–260. [Google Scholar] [CrossRef]
- Leggat, P.A.; Smith, D.R.; Kedjarune, U. Surgical applications of cyanoacrylate adhesives: A review of toxicity. ANZ J. Surg. 2007, 77, 209–213. [Google Scholar] [CrossRef]
- Wain, J.C.; Kaiser, L.R.; Johnstone, D.W.; Yang, S.C.; Wright, C.D.; Friedberg, J.S.; Feins, R.H.; Heitmiller, R.F.; Mathisen, D.J.; Selwyn, M.R. Trial of a novel synthetic sealant in preventing air leaks after lung resection. Ann. Thorac. Surg. 2001, 71, 1623–1629. [Google Scholar] [CrossRef]
- Bal-Ozturk, A.; Cecen, B.; Avci-Adali, M.; Topkaya, S.N.; Alarcin, E.; Yasayan, G.; Li, Y.C.E.; Bulkurcuoglu, B.; Akpek, A.; Avci, H.; et al. Tissue Adhesives: From Research to Clinical Translation. Nano Today 2021, 36, 101049. [Google Scholar] [CrossRef] [PubMed]
- Torchiana, D.F. Polyethylene glycol based synthetic sealants: Potential uses in cardiac surgery. J. Card. Surg. 2003, 18, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Alleyne, C.H.; Cawley, C.M.; Barrow, D.L.; Poff, B.C.; Powell, M.D.; Sawhney, A.S.; Dillehay, D.L. Efficacy and biocompatibility of a photopolymerized, synthetic, absorbable hydrogel as a dural sealant in a canine craniotomy model. J. Neurosurg. 1998, 88, 308–313. [Google Scholar] [CrossRef]
- Slezak, P.; Klang, A.; Ferguson, J.; Monforte, X.; Schmidt, P.; Bauder, B.; Url, A.; Osuchowski, M.; Redl, H.; Spazierer, D.; et al. Tissue reactions to polyethylene glycol and glutaraldehyde-based surgical sealants in a rabbit aorta model. J. Biomater. Appl. 2020, 34, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Glickman, M.; Gheissari, A.; Money, S.; Martin, J.; Ballard, J.L. A polymeric sealant inhibits anastomotic suture hole bleeding more rapidly than gelfoam/thrombin: Results of a randomized controlled trial. Arch. Surg. 2002, 137, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Buskens, E.; Meijboom, M.J.; Kooijman, H.; Van Hout, B.A. The use of a surgical sealant (CoSeal®) in cardiac and vascular reconstructive surgery: An economic analysis. J. Cardiovasc. Surg. 2006, 47, 161–170. [Google Scholar]
- Lin, K.L.; Yang, D.Y.; Chu, I.M.; Cheng, F.C.; Chen, C.J.; Ho, S.P.; Pan, H.C. DuraSeal as a ligature in the anastomosis of rat sciatic nerve gap injury. J. Surg. Res. 2010, 161, 101–110. [Google Scholar] [CrossRef]
- Tjandra, J.J.; Chan, M.K.Y. A sprayable hydrogel adhesion barrier facilitates closure of defunctioning loop ileostomy: A randomized trial. Dis. Colon Rectum 2008, 51, 956–960. [Google Scholar] [CrossRef]
- Schnriger, B.; Barmparas, G.; Branco, B.C.; Lustenberger, T.; Inaba, K.; Demetriades, D. Prevention of postoperative peritoneal adhesions: A review of the literature. Am. J. Surg. 2011, 201, 111–121. [Google Scholar] [CrossRef]
- Tanaka, K.; Takamoto, S.; Ohtsuka, T.; Kotsuka, Y.; Kawauchi, M. Application of AdvaSeal for acute aortic dissection: Experimental study. Ann. Thorac. Surg. 1999, 68, 1308–1312. [Google Scholar] [CrossRef]
- Bhatia, S.K. Biomaterials for Clinical Applications; Springer: New York, NY, USA, 2010; pp. 1–283. [Google Scholar] [CrossRef]
- Giavaresi, G.; Tschon, M.; Borsari, V.; Daly, J.H.; Liggat, J.J.; Fini, M.; Bonazzi, V.; Nicolini, A.; Carpi, A.; Morra, M.; et al. New polymers for drug delivery systems in orthopaedics: In vivo biocompatibility evaluation. Biomed. Pharmacother. 2004, 58, 411–417. [Google Scholar] [CrossRef]
- Bezwada, R.S.; Jamiolkowski, D.D.; Lee, I.Y.; Agarwal, V.; Persivale, J.; Trenka-Benthin, S.; Erneta, M.; Suryadevara, J.; Yang, A.; Liu, S. Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 1995, 16, 1141–1148. [Google Scholar] [CrossRef]
- Sarasam, A.; Madihally, S.V. Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 2005, 26, 5500–5508. [Google Scholar] [CrossRef]
- Ferreira, P.; Coelho, J.F.J.; Gil, M.H. Development of a new photocrosslinkable biodegradable bioadhesive. Int. J. Pharm. 2008, 352, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.G.; Malik, A.N.; Kim, T.K.; Manson, P.N.; Elisseeff, J.H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.; Pereira, R.; Coelho, J.F.J.; Silva, A.F.M.; Gil, M.H. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int. J. Biol. Macromol. 2007, 40, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Heiss, C.; Kraus, R.; Schluckebier, D.; Stiller, A.C.; Wenisch, S.; Schnettler, R. Bone Adhesives in Trauma and Orthopedic Surgery. Eur. J. Trauma 2006, 32, 141–148. [Google Scholar] [CrossRef]
- Phaneuf, M.D.; Dempsey, D.J.; Bide, M.J.; Quist, W.C.; LoGerfo, F.W. Coating of Dacron vascular grafts with an ionic polyurethane: A novel sealant with protein binding properties. Biomaterials 2001, 22, 463–469. [Google Scholar] [CrossRef]
- Gilbert, T.W.; Badylak, S.F.; Gusenoff, J.; Beckman, E.J.; Clower, D.M.; Daly, P.; Rubin, J.P. Lysine-derived urethane surgical adhesive prevents seroma formation in a canine abdominoplasty model. Plast. Reconstr. Surg. 2008, 122, 95–102. [Google Scholar] [CrossRef]
- TissuGlu® Surgical Adhesive Patient Information Brochure; Cohera Medical, Inc.: Oplotnica, Slovenia, 2014.
- Stewart, R.J.; Wang, C.S.; Shao, H. Complex coacervates as a foundation for synthetic underwater adhesives. Adv. Colloid Interface Sci. 2011, 167, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, J.H. Nature’s underwater adhesive specialist. Int. J. Adhes. Adhes. 1987, 7, 9–14. [Google Scholar] [CrossRef]
- Seo, S.; Lee, D.W.; Ahn, J.S.; Cunha, K.; Filippidi, E.; Ju, S.W.; Shin, E.; Kim, B.S.; Levine, Z.A.; Lins, R.D.; et al. Significant Performance Enhancement of Polymer Resins by Bioinspired Dynamic Bonding. Adv. Mater. 2017, 29, 1703026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priemel, T.; Degtyar, E.; Dean, M.N.; Harrington, M.J. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nat. Commun. 2017, 8, 14539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H. Mussel-Inspired Adhesives and Coatings. Annu. Rev. Mater. Sci. 2011, 41, 99–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimnejad, M.; Zhong, W. Mussel-inspired hydrogel tissue adhesives for wound closure. RSC Adv. 2017, 7, 47380–47396. [Google Scholar] [CrossRef] [Green Version]
- Dove, J.; Sheridan, P. Adhesive protein from mussels: Possibilities for dentistry, medicine, and industry. J. Am. Dent. Assoc. 1986, 112, 879. [Google Scholar] [CrossRef]
- Grande, D.; Pitman, M. The use of adhesives in chondrocyte transplantation surgery. Preliminary studies. Bull. Hosp. Jt. Dis. Orthop. Inst. 1988, 48, 140–148. [Google Scholar]
- Waite, J.H. Adhesion à la Moule. Integr. Comp. Biol. 2002, 42, 1172–1180. [Google Scholar] [CrossRef]
- Qin, X.X.; Coyne, K.J.; Waite, J.H. Tough tendons. Mussel byssus has collagen with silk-like domains. J. Biol. Chem. 1997, 272, 32623–32627. [Google Scholar] [CrossRef] [Green Version]
- Waite, J.H. Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. J. Biol. Chem. 1983, 258, 2911–2915. [Google Scholar] [CrossRef]
- Waite, J.H.; Tanzer, M.L. Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 1981, 212, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Two Firms Race to Derive Profits from Mussels’ Glue. Available online: https://www.the-scientist.com/news/two-firms-race-to-derive-profits-from-mussels-glue-61325 (accessed on 13 February 2022).
- Pennisi, E. Geckos Climb by the Hairs of Their Toes. Science 2000, 288, 1717–1718. [Google Scholar] [CrossRef]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef]
- Autumn, K.; Sitti, M.; Liang, Y.A.; Peattie, A.M.; Hansen, W.R.; Sponberg, S.; Kenny, T.W.; Fearing, R.; Israelachvili, J.N.; Full, R.J. Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 2002, 99, 12252–12256. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, B.P.; Messersmith, P.B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341. [Google Scholar] [CrossRef]
- Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J.W.; Chan, E.P.; Carter, D.J.D.; Bettinger, C.J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E.; et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA 2008, 105, 2307–2312. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Celiz, A.D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B.R.; Vasilyev, N.V.; Vlassak, J.J.; Suo, Z.; et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liu, Y.; Bu, S.; Wu, T.; Chang, Q.; Singh, G.; Cao, X.; Deng, C.; Li, B.; Luo, G.; et al. Egg Albumen as a Fast and Strong Medical Adhesive Glue. Adv. Healthc. Mater. 2017, 6, 1700132. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ren, J.; Li, J. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine. Cytotherapy 2012, 14, 555–562. [Google Scholar] [CrossRef]
- Porada, C.; Zanjani, E.; Almeida-Porada, G. Adult mesenchymal stem cells: A pluripotent population with multiple applications. Curr. Stem Cell Res. Ther. 2006, 1, 365–369. [Google Scholar] [CrossRef]
- Ortiz, A.D.C.; Fideles, S.O.M.; Pomini, K.T.; Reis, C.H.B.; Bueno, C.R.D.S.; Pereira, E.D.S.B.M.; Rossi, J.D.O.; Novais, P.C.; Pilon, J.P.G.; Junior, G.M.R.; et al. Effects of Therapy with Fibrin Glue combined with Mesenchymal Stem Cells (MSCs) on Bone Regeneration: A Systematic Review. Cells 2021, 10, 2323. [Google Scholar] [CrossRef]
- Murphy, M.B.; Moncivais, K.; Caplan, A.I. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 2013, 45, e54. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski, W.; Dobrzynski, M.; Wiglusz, R.J.; Rybak, Z.; Szymonowicz, M. Selected Nanomaterials’ Application Enhanced with the Use of Stem Cells in Acceleration of Alveolar Bone Regeneration during Augmentation Process. Nanomaterials 2020, 10, 1216. [Google Scholar] [CrossRef]
- Cherubino, M.; Rubin, J.P.; Miljkovic, N.; Kelmendi-Doko, A.; Marra, K.G. Adipose-derived stem cells for wound healing applications. Ann. Plast. Surg. 2011, 66, 210–215. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, L.; Scott, P.G.; Tredget, E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007, 25, 2648–2659. [Google Scholar] [CrossRef] [Green Version]
- Branski, L.K.; Gauglitz, G.G.; Herndon, D.N.; Jeschke, M.G. A review of gene and stem cell therapy in cutaneous wound healing. Burns 2009, 35, 171–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimian, T.G.; Pouzoulet, F.; Squiban, C.; Buard, V.; André, M.; Cousin, B.; Gourmelon, P.; Benderitter, M.; Casteilla, L.; Tamarat, R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Park, B.S.; Sung, J.H.; Yang, J.M.; Park, S.B.; Kwak, S.J.; Park, J.S. Wound healing effect of adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 2007, 48, 15–24. [Google Scholar] [CrossRef]
- Gao, X.; Cheng, H.; Sun, X.; Lu, A.; Ruzbarsky, J.J.; Wang, B.; Huard, J. Comparison of autologous blood clots with fibrin sealant as scaffolds for promoting human muscle-derived stem cell-mediated bone regeneration. Biomedicines 2021, 9, 983. [Google Scholar] [CrossRef]
- Krug, C.; Beer, A.; Hartmann, B.; Prein, C.; Clause-Schaumann, H.; Holzbach, T.; Aszodi, A.; Giunta, R.E.; Saller, M.M.; Volkmer, E. Fibrin glue displays promising in vitro characteristics as a potential carrier of adipose progenitor cells for tissue regeneration. J. Tissue Eng. Regen. Med. 2019, 13, 359–368. [Google Scholar] [CrossRef]
- Ahmed, T.A.E.; Dare, E.V.; Hincke, M. Fibrin: A Versatile Scaffold for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2008, 14, 199–215. [Google Scholar] [CrossRef]
- De la Puente, P.; Ludeña, D. Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp. Cell Res. 2014, 322, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.J.; Choi, I.H.; Chung, C.Y.; Cho, T.J.; Kim, I.O.; Kim, C.J. Implantation of perichondrium-derived chondrocytes in physeal defects of rabbit tibiae. Acta Orthop. 2005, 76, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Yamada, Y.; Naiki, T.; Ueda, M. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin. Oral Implants Res. 2006, 17, 579–586. [Google Scholar] [CrossRef]
- Lee, M.G.M.; Jones, D. Applications of fibrin sealant in surgery. Surg. Innov. 2005, 12, 203–213. [Google Scholar] [CrossRef]
- Sanders, L.; Nagatomi, J. Clinical Applications of Surgical Adhesives and Sealants. Crit. Rev. Biomed. Eng. 2014, 42, 271. [Google Scholar] [CrossRef]
- Spotnitz, W.D.; Burks, S. Hemostats, sealants, and adhesives III: A new update as well as cost and regulatory considerations for components of the surgical toolbox. Transfusion 2012, 52, 2243–2255. [Google Scholar] [CrossRef]
- Duarte, A.P.; Coelho, J.F.; Bordado, J.C.; Cidade, M.T.; Gil, M.H. Surgical adhesives: Systematic review of the main types and development forecast. Prog. Polym. Sci. 2012, 37, 1031–1050. [Google Scholar] [CrossRef]
- Andreotti Damante, C.; Cardoso, M.V.; Hage Karam, P.S.B.; Haiter, A.C.; Sant’Ana, A.C.P.; Greghi, S.L.A.; Zangrando, M.S.R.; De Rezende, M.L.R.; Oliveira, R.C. Evaluation of Regular Market Ethyl Cyanoacrylate Cytotoxicity for Human Gingival Fibroblasts and Osteoblasts. Surg. Infect. 2020, 21, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Perrin, B.R.M.; Dupeux, M.; Tozzi, P.; Delay, D.; Gersbach, P.; von Segesser, L.K. Surgical glues: Are they really adhesive? Eur. J. Cardio-Thoracic Surg. 2009, 36, 967–972. [Google Scholar] [CrossRef]
- Black, K. Tissue Restoration and Repair—Application of Cutting-edge Technologies to Surgical Procedures. In Business Briefing: Medical Device Manufacturing and Technology; Cooper, E., Ed.; Business Briefings Ltd.: London, UK, 2002; pp. 1–3. [Google Scholar]
- Ahn, B.K. Perspectives on Mussel-Inspired Wet Adhesion. J. Am. Chem. Soc. 2017, 139, 10166–10171. [Google Scholar] [CrossRef] [Green Version]
Type of Glue | Application | References |
---|---|---|
(1) Natural adhesives | ||
(1a) Fibrin adhesive | hemostasis during cardiac surgery; sealing of vascular grafts; support in the treatment of aortic dissection in vascular surgery; prevention of cerebrospinal fluid leakage during neurosurgery; hemostasis control in bleeding from burn wounds; in endoscopy for the treatment of bleeding from peptic ulcers implantation of biomaterials in inguinal hernia operations; treatment of lymphangiomas; treatment of lymphocele; prevention of lymphatic leakage; use of adhesive for pleurodesis; in thoracic surgery for treatment of bronchial fistulas; for pleural sealing; treatment of damaged nerves; reduction of bleeding in orthopedic surgery | [21,22,23,24,31,32,33,34,35,36,38,39,40,41,42,43,44,45] |
(1b) Collagen adhesive | for controlling hemostasis in vascular surgery; the prevention and treatment of cerebrospinal fluid leaks in neurosurgery; the endoscopic treatment of gastrointestinal bleeding | [58,63] |
(1c) Gelatin adhesive | cardiac and vascular surgery to produce hemostasis and stop bleeding from vessels; control hemostasis in vascular and organ bleeding in general surgical procedures | [73,75,197] |
(1d) Chitosan-based adhesive | staunching of organ and venous bleeding; treatment of damaged nerves, intestines, and closure of skin wounds; treatment of scleral injuries; maintenance of hemostasis after endovascular interventions | [77,78,79,80,82,83,84,85,86] |
(1e) Chondroitin-based adhesive | orthopedics for implantation of biomaterials; in ophthalmology as an alternative to sutures | [91,93,94] |
(2) Synthetic adhesives | ||
(2a) Cyanoacrylate-based adhesive | endoscopic treatment of gastrointestinal bleeding; treatment of acute arterial hemorrhage; implantation of biomaterials during inguinal hernia surgery; support of tissue healing during dental implant surgery; treatment of hypersensitivity after dental procedures; closure of skin wounds and mucous membranes; treatment of venous insufficiency of the lower limbs; use for neurological embolization | [104,105,106,107,108,109,110,111,112,113,114] |
(2b) Polyethylene glycol (PEG)-based adhesive | prevention of suture line leakage in thoracic surgery and cerebrospinal fluid leakage after neurosurgery; prevention of anastomotic leakage in vascular and cardiac surgery; wound closure and sealing in general surgery, gynecology, and ophthalmology; nerve regeneration. | [131,133,134,136,137,138,139,140] |
(2c) Urethane-based adhesive | soft tissue fusion in general, and plastic surgery and orthopedics; sealing of vascular prostheses in angiosurgical procedures. | [72,143,144,145,148] |
(3) Biomimetic adhesives | ||
(3a) Adhesive based on mussel adhesion proteins | potential applications in cell and tissue interfacing | [160,161,162,198] |
(3b) Adhesive based on the adhesive properties of the gecko | sealing anastomoses; controlling bleeding from wounds, burns, and ulcers; implantation of biomaterials | [170] |
(3c) Adhesive based on snail mucus | control of arterial and parenchymal hemorrhages; skin wound closure; biomaterial implantation | [171] |
(3d) Adhesive based on chicken egg white | skin wound closure | [172] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, M.; Zakrzewski, W.; Szymonowicz, M.; Rybak, Z. Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. Materials 2022, 15, 5215. https://doi.org/10.3390/ma15155215
Mazur M, Zakrzewski W, Szymonowicz M, Rybak Z. Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. Materials. 2022; 15(15):5215. https://doi.org/10.3390/ma15155215
Chicago/Turabian StyleMazur, Maciej, Wojciech Zakrzewski, Maria Szymonowicz, and Zbigniew Rybak. 2022. "Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature" Materials 15, no. 15: 5215. https://doi.org/10.3390/ma15155215
APA StyleMazur, M., Zakrzewski, W., Szymonowicz, M., & Rybak, Z. (2022). Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. Materials, 15(15), 5215. https://doi.org/10.3390/ma15155215