Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation Cu NPs
2.3. Preparation AunCu100−n NPs
2.4. Characterizations
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Morphology
3.2. Structures
3.3. Electrochemical CO2 Reduction on the AunCu100−n/C Catalysts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, M.; Wang, H.; Luo, W.; Sherrell, P.C.; Chen, J.; Yang, J. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Z.; Gao, F.Y.; Gao, M.R. Regulating the oxidation state of nanomaterials for electrocatalytic CO2 reduction. Energy Environ. Sci. 2021, 14, 1121–1139. [Google Scholar] [CrossRef]
- Daiyan, R.; Saputera, W.H.; Masood, H.; Leverett, J.; Lu, X.; Amal, R. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel. Adv. Energy. Mater. 2020, 10, 1902106. [Google Scholar] [CrossRef]
- Cao, Z.; Zacate, S.B.; Sun, X.; Liu, J.; Hale, E.M.; Carson, W.P.; Liu, W. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2018, 130, 12857–12861. [Google Scholar] [CrossRef]
- de Jesus Gálvez-Vázquez, M.; Moreno-García, P.; Xu, H.; Hou, Y.; Hu, H.; Montiel, I.Z.; Broekmann, P. Environment matters: CO2RR electrocatalyst performance testing in a gas-fed zero-gap electrolyzer. ACS Catal. 2020, 10, 13096–13108. [Google Scholar] [CrossRef]
- Shen, S.; Peng, X.; Song, L.; Qiu, Y.; Li, C.; Zhuo, L.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229. [Google Scholar] [CrossRef] [PubMed]
- Back, S.; Yeom, M.S.; Jung, Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 2015, 5, 5089–5096. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Woo, H.; Choi, J.; Jung, H.W.; Kim, Y.T. CO2 electroreduction on Au/TiC: Enhanced activity due to metal-support interaction. ACS Catal. 2017, 7, 2101–2106. [Google Scholar] [CrossRef]
- Li, S.; Alfonso, D.; Nagarajan, A.V.; House, S.D.; Yang, J.C.; Kauffman, D.R.; Jin, R. Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 2020, 10, 12011–12016. [Google Scholar] [CrossRef]
- Kim, C.; Eom, T.; Jee, M.S.; Jung, H.; Kim, H.; Min, B.K.; Hwang, Y.J. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 2017, 7, 779–785. [Google Scholar] [CrossRef]
- Bagger, A.; Ju, W.; Varela, A.S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: Classifying Cu facets. ACS Catal. 2019, 9, 7894–7899. [Google Scholar] [CrossRef]
- Yang, D.R.; Liu, L.; Zhang, Q.; Shi, Y.; Zhou, Y.; Liu, C.; Xia, X.H. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci. Bull. 2020, 65, 796–802. [Google Scholar] [CrossRef]
- Ma, M.; Liu, K.; Shen, J.; Kas, R.; Smith, W.A. In Situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion. ACS Energy Lett. 2018, 3, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Lee, J.H.; Liu, D.; Liu, Y.; Lin, Z.; Xie, Z.; Chen, J.G. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, L.; Yang, P.; Hu, C.; Dong, H.; Zhao, Z.J.; Gong, J. Formation of enriched vacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys. ACS Energy Lett. 2018, 3, 2144–2149. [Google Scholar] [CrossRef]
- Zheng, T.; Jiang, K.; Wang, H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 2018, 30, 1802066. [Google Scholar] [CrossRef]
- Yin, Z.; Gao, D.; Yao, S.; Zhao, B.; Cai, F.; Lin, L.; Bao, X. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 2016, 27, 35–43. [Google Scholar] [CrossRef]
- Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem. Int. Ed. 2018, 130, 6162–6167. [Google Scholar] [CrossRef]
- He, J.; Johnson, N.J.; Huang, A.; Berlinguette, C.P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 2018, 11, 48–57. [Google Scholar] [CrossRef]
- Chang, F.; Liu, Y.; Zhang, Q.; Jia, Z.; Yang, L.; Wang, X.; Bai, Z. Regulating the lattice strain of platinum-copper catalysts for enhancing collaborative electrocatalysis. Inorg. Chem. Front. 2022, 9, 249–258. [Google Scholar] [CrossRef]
- Miao, R.; Chang, F.; Ren, M.; He, X.; Yang, L.; Wang, X.; Bai, Z. Platinum–palladium alloy nanotetrahedra with tuneable lattice-strain for enhanced intrinsic activity. Catal. Sci. Technol. 2020, 10, 6173–6179. [Google Scholar] [CrossRef]
- Ren, M.; Chang, F.; Miao, R.; He, X.; Yang, L.; Wang, X.; Bai, Z. Strained lattice platinum–palladium alloy nanowires for efficient electrocatalysis. Inorg. Chem. Front. 2020, 7, 1713–1718. [Google Scholar] [CrossRef]
- Dong, C.; Fu, J.; Liu, H.; Ling, T.; Yang, J.; Qiao, S.Z.; Du, X.W. Tuning the selectivity and activity of Au catalysts for carbon dioxide electroreduction via grain boundary engineering: A DFT study. J. Mater. Chem. A 2017, 5, 7184–7190. [Google Scholar] [CrossRef]
- Kim, D.; Xie, C.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Yang, P. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.M.; Samu, G.F.; Balog, A.; Csapó, E.; Janáky, C. Composition-dependent electrocatalytic behavior of Au–Sn bimetallic nanoparticles in carbon dioxide reduction. ACS Energy Lett. 2018, 4, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Qu, X.; Han, Y.; Shen, L.; Yin, S.; Li, G.; Sun, S. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B Environ. 2020, 263, 118345. [Google Scholar] [CrossRef]
- Xia, Z.; Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278. [Google Scholar] [CrossRef]
- Andersen, M.; Medford, A.J.; Nørskov, J.K.; Reuter, K. Scaling-relation-based analysis of bifunctional catalysis: The case for homogeneous bimetallic alloys. ACS Catal. 2017, 7, 3960–3967. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, B.; Miao, S.; Liu, W.; Xie, J.; Lee, S.; Ma, D. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane. ACS Catal. 2019, 9, 2693–2700. [Google Scholar] [CrossRef]
- Que, L.; Yu, F.; Zheng, L.; Wang, Z.B.; Gu, D. Tuning lattice spacing in titanate nanowire arrays for enhanced sodium storage and long-term stability. Nano Energy 2018, 45, 337–345. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Chang, J.; Ge, J.; Liu, C.; Vladimir, F.; Xing, W. Sea urchin-like Aucore@ Pdshell electrocatalysts with high FAOR performance: Coefficient of lattice strain and electrochemical surface area. Appl. Catal. B Environ. 2020, 260, 118200. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Liu, C.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134. [Google Scholar] [CrossRef]
- Chang, F.; Bai, Z.; Li, M.; Ren, M.; Liu, T.; Yang, L.; Lu, J. Strain-modulated platinum-palladium nanowires for oxygen reduction reaction. Nano Lett. 2020, 20, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Shan, S.; Petkov, V.; Skeete, Z.; Lu, A.; Ravid, J.; Zhong, C.J. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.; Yu, G.; Shan, S.; Skeete, Z.; Wu, J.; Luo, J.; Zhong, C.J. Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction. J. Mater. Chem. 2017, 5, 12557–12568. [Google Scholar] [CrossRef]
- Chang, F.; Wei, J.; Zhang, Q.; Jia, Z.; Liu, Y.; Yang, L.; Bai, Z. Modulating the multiple intrinsic properties of platinum–iron alloy nanowires towards enhancing collaborative electrocatalysis. Mater. Chem. Front. 2021, 5, 8118–8126. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Y.J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Sun, S. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.; Han, H.; Chung, Y.S.; Yoon, W.; Choi, J.; Kim, W.B. In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO. Appl. Catal. B Environ. 2019, 248, 147–156. [Google Scholar] [CrossRef]
- Liu, M.; Pang, Y.; Zhang, B.; Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C.; Fan, F.; Cao, C.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, F.; Wang, C.; Wu, X.; Liu, Y.; Wei, J.; Bai, Z.; Yang, L. Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction. Materials 2022, 15, 5064. https://doi.org/10.3390/ma15145064
Chang F, Wang C, Wu X, Liu Y, Wei J, Bai Z, Yang L. Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction. Materials. 2022; 15(14):5064. https://doi.org/10.3390/ma15145064
Chicago/Turabian StyleChang, Fangfang, Chenguang Wang, Xueli Wu, Yongpeng Liu, Juncai Wei, Zhengyu Bai, and Lin Yang. 2022. "Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction" Materials 15, no. 14: 5064. https://doi.org/10.3390/ma15145064
APA StyleChang, F., Wang, C., Wu, X., Liu, Y., Wei, J., Bai, Z., & Yang, L. (2022). Strained Lattice Gold-Copper Alloy Nanoparticles for Efficient Carbon Dioxide Electroreduction. Materials, 15(14), 5064. https://doi.org/10.3390/ma15145064