A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods
Abstract
:1. Introduction
2. Fundamental Wetting Theory
3. Corrections in the Static Contact Angle Model on Heterogeneous Surface
3.1. Roughness Description System
3.2. Fractal Theory Description System
3.3. Re-Entrant Geometry Description System
3.4. Fractal Theory Description System
4. Corrections in the Wetting Transition Mechanism on Heterogeneous Surface
4.1. The Universal Transition Mechanism on Flat-Top Pillar Microstructure
4.2. The Asymmetric Wetting Propagation
4.3. The Wetting Transition Mechanism on Multi-Scaled Microstructure
4.4. The Wetting Transition Mechanism on Re-Entrant Microstructure
5. Wetting Transition Testing Methods
5.1. Optical Methodology
5.2. Acoustic Methodology
5.3. Confocal Laser Scanning Microscopy Methodology
5.4. Freezing Fracture Methodology
5.5. High-Speed Camera Methodology
6. Conclusions and Future Outlook
- At present, the metastable state is mainly described based on the energy barrier and Laplace pressure, with certain limitations. Most of the theories for the metastable state are based on regular periodic arranged structures. Hence, only the materials with a regular microstructure can have their superhydrophobic properties predicted approximately. Therefore, a thorough understanding of the theory of energy barrier and Laplace pressure on different heterogeneous surfaces is essential.
- There is also an asymmetric contact configuration on the microstructure surface when wetting is metastable. At present, there is a lack of a distinct calculation model for asymmetric instability from a theoretical perspective.
- Most of the classical models on the transition mechanism with fractural geometry and re-entrant geometry assume the droplet perpendicularly impacting the surface. However, inclined surfaces are more common in reality. Hence, future research should focus on droplet dynamics over inclined surfaces.
- The new testing techniques are essential to further discern and identify underlying issues in wetting study since the wetting transition of the superhydrophobic state under pressure is a complicated process. Therefore, future study on advanced testing methods is necessary.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iskender, Y.; Yilgör, E.; Koşak, Ç.S. Superhydrophobic Polymer Surfaces: Preparation, Properties and Applications; With Stimuli-Responsive Surfaces with tunable wettability; Smithers Rapra: Shropshire, UK, 2016. [Google Scholar]
- Erbil, H.Y.; Cansoy, C.E. Range of Applicability of the Wenzel and Cassie−Baxter Equations for Superhydrophobic Surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef] [PubMed]
- Cansoy, C.E.; Erbil, H.Y.; Akar, O.; Akin, T. Effect of pattern size and geometry on the use of Cassie–Baxter equation for superhydrophobic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2011, 386, 116–124. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-inspired sustainable and durable superhydrophobic materials: From nature to market. J. Mater. Chem. A 2019, 7, 16643–16670. [Google Scholar] [CrossRef]
- Young, T., III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Wang, F.-H.; Zhao, X.; Zhang, K. Wetting Transition and Stability Testing of Superhydrophobic State. Acta Phys. -Chim. Sin. 2013, 29, 2459–2464. [Google Scholar]
- Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Whyman, G.; Erlich, M. Resonance Cassie−Wenzel Wetting Transition for Horizontally Vibrated Drops Deposited on a Rough Surface. Langmuir 2007, 23, 12217–12221. [Google Scholar] [CrossRef]
- Bartolo, D.; Bouamrirene, F.; Verneuil, E.; Buguin, A.; Silberzan, P.; Moulinet, S. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Eur. Lett. 2006, 74, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.-M.; Paxson, A.T.; Varanasi, K.K.; Patankar, N.A. Rapid Deceleration-Driven Wetting Transition during Pendant Drop Deposition on Superhydrophobic Surfaces. Phys. Rev. Lett. 2011, 106, 036102. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.S.D. Cause Experiment and Science: A Galilean Dialogue Incorporating a New English Translation of Galileo’s ‘Bodies that Stay Atop Water or Move in it’; University of Chicago Press: Chicago, IL, USA, 1981. [Google Scholar]
- Kota, A.K.; Mabry, J.M.; Tuteja, A. Superoleophobic surfaces: Design criteria and recent studies. Surf. Innov. 2013, 1, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Chu, S.; Lv, P.; Duan, H. Importance of Hierarchical Structures in Wetting Stability on Submersed Superhydrophobic Surfaces. Langmuir 2012, 28, 9440–9450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poetes, R.; Holtzmann, K.; Franze, K.; Steiner, U. Metastable Underwater Superhydrophobicity. Phys. Rev. Lett. 2010, 105, 166104. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Xue, Y.; Shi, Y.; Lin, H.; Duan, H. Metastable states and wetting transition of submerged superhydrophobic structures. Phys. Rev. Lett. 2014, 112, 196101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, Z.; Ahn, Y.; Jang, J. Molecular simulation study on the wettability of a surface corrugated with trapezoidal nanopillars. Appl. Surf. Sci. 2020, 537, 147918. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, M.; Ahn, Y.; Jang, J. Wettability of a surface engraved with the periodic nanoscale trenches: Effects of geometry and pressure. J. Mol. Liq. 2021, 335, 116276. [Google Scholar] [CrossRef]
- Bai, L.; Kim, K.; Ha, M.Y.; Ahn, Y.; Jang, J. Molecular Insights on the Wetting Behavior of a Surface Corrugated with Nanoscale Domed Pillars. Langmuir 2021, 37, 9336–9345. [Google Scholar] [CrossRef]
- Yan, M.; Li, T.; Zheng, P.; Wei, R.; Jiang, Y.; Li, H. Wetting state transition of a liquid gallium drop at the nanoscale. Phys. Chem. Chem. Phys. 2020, 22, 11809–11816. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, L.; Wang, Q.; Hao, P.; Zheng, X. Wettability behavior of nanodroplets on copper surfaces with hierarchical nanostructures. Colloids Surf. A Physicochem. Eng. Asp. 2020, 604, 125291. [Google Scholar] [CrossRef]
- Li, H.; Zhang, K. Dynamic behavior of water droplets impacting on the superhydrophobic surface: Both experimental study and molecular dynamics simulation study. Appl. Surf. Sci. 2019, 498, 143793. [Google Scholar] [CrossRef]
- Han, X.; Wang, M.; Yan, R.; Wang, H. Cassie State Stability and Gas Restoration Capability of Superhydrophobic Surfaces with Truncated Cone-Shaped Pillars. Langmuir 2021, 37, 12897–12906. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Savaloni, H.; Shahraki, M.G. Influence of surface morphology and nano-structure on hydrophobicity: A molecular dynamics approach. Appl. Surf. Sci. 2019, 485, 536–546. [Google Scholar] [CrossRef]
- Saleki, O.; Moosavi, A.; Hannani, S.K. Molecular Dynamics Study of Friction Reduction of Two-Phase Flows on Surfaces Using 3D Hierarchical Nanostructures. J. Phys. Chem. C 2019, 123, 27519–27530. [Google Scholar] [CrossRef]
- Li, H.; Yan, T. Importance of moderate size of pillars and dual-scale structures for stable superhydrophobic surfaces: A molecular dynamics simulation study. Comput. Mater. Sci. 2020, 175, 109613. [Google Scholar] [CrossRef]
- Zhang, B.-X.; Wang, S.-L.; Wang, Y.-B.; Yang, Y.-R.; Wang, X.-D.; Yang, R.-G. Harnessing Reversible Wetting Transition to Sweep Contaminated Superhydrophobic Surfaces. Langmuir 2021, 37, 3929–3938. [Google Scholar] [CrossRef]
- Bryk, P.; Terzyk, A.P. Chasing the Critical Wetting Transition. An Effective Interface Potential Method. Materials 2021, 14, 7138. [Google Scholar] [CrossRef]
- Lopes, D.M.; Mombach, J.C.M. Two-Dimensional Wetting Transition Modeling with the Potts Model. Braz. J. Phys. 2017, 47, 672–677. [Google Scholar] [CrossRef]
- Yin, B.; Xu, S.; Yang, S.; Dong, F. Shape Optimization of a Microhole Surface for Control of Droplet Wettability via the Lattice Boltzmann Method and Response Surface Methodology. Langmuir 2021, 37, 3620–3627. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, Y.; Liu, X.; Liu, B. Lattice Boltzmann parallel simulation of microflow dynamics over structured surfaces. Adv. Eng. Softw. 2017, 107, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Zu, Y.; Chen, S.; Yan, Y. Wetting transition energy curves for a droplet on a square-post patterned surface. Sci. Bull. 2016, 62, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Yan, Y.; Chen, S.; Giddings, D. Numerical study of wetting transitions on biomimetic surfaces using a lattice Boltzmann approach with large density ratio. J. Bionic Eng. 2017, 14, 486–496. [Google Scholar] [CrossRef]
- Farokhirad, S.; Lee, T. Computational study of microparticle effect on self-propelled jumping of droplets from superhydrophobic substrates. Int. J. Multiph. Flow 2017, 95, 220–234. [Google Scholar] [CrossRef]
- Fakhari, A.; Bolster, D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios. J. Comput. Phys. 2017, 334, 620–638. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Hao, L. Investigation of wetting states and wetting transition of droplets on the microstructured surface using the lattice Boltzmann model. Numer. Heat Transfer. Part A Appl. 2020, 78, 321–337. [Google Scholar] [CrossRef]
- Randive, P.; Dalal, A.; Mukherjee, P.P. Probing the influence of confinement and wettability on droplet displacement behavior: A mesoscale analysis. Eur. J. Mech. B Fluids 2018, 75, 327–338. [Google Scholar] [CrossRef]
- Sumit, P.; Prakhar, D.; Sujay, C. Superhydrophobic Surfaces: Insignts from Theory and Experiment. J. Phys. Chem. 2020, 124, 1323–1360. [Google Scholar]
- McHale, G. Cassie and Wenzel: Were They Really So Wrong? Langmuir 2007, 23, 8200–8205. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 295, 300–319. [Google Scholar]
- Jiang, Y.; Choi, C. Droplet rentention on superhydrophobic surfaces: A Critical Review. Adv. Mater. Interfaces 2020, 8, 2001205. [Google Scholar] [CrossRef]
- Kim, S.; Kim, D.H.; Su, H.C.; Woo, Y.K.; Sin, K.; Young, T.C. Effect of surface pattern morphology on inducing superhydrophobicity. Appl. Surf. Sci. 2020, 513, 145847. [Google Scholar] [CrossRef]
- Cao, J.; Gao, D.; Li, C.; Si, X.; Jia, J.; Qi, J. Bioinspired Metal-Intermetallic Laminated Composites for the Frabrication of Superhydrophobic Surfaces with Responsive Wettability. Acs Appl. Mater. Interfaces 2021, 13, 5834–5843. [Google Scholar] [CrossRef] [PubMed]
- Mandelbrot, B. How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, J.C.; Gates, B.D.; Wolfe, D.B.; Paul, K.E.; Whitesides, G.M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Lett. 2002, 2, 891. [Google Scholar] [CrossRef]
- Qian, X.-S. Modern Mechanics-A Speech at the 1978 National Conference on Mechanical Planning. Mech. Eng. 1979, 4–9. [Google Scholar]
- Shibuichi, S.; Onda, T.; Satoh, N.; Tsujii, K. Super Water-Repellent Surfaces Resulting from Fractal Structure. J. Phys. Chem. 1996, 100, 19512–19517. [Google Scholar] [CrossRef]
- Synytska, A.; Lonov, L.; Grundke, K.; Stamm, M. Wetting on Fractal Superhydrophobic Surfaces from “Core-shell” Particles: A Comparison of Theory and Experiment. Langmuir 2009, 25, 3132–3136. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, R.; Xu, J. Superhydrophobic Surfaces Based on Fractal and Hierarchical Microstructures Using Two-Photon Polymerization: Toward Flexible Superhydrophobic Films. Adv. Mater. Interfaces 2018, 5, 1801126. [Google Scholar] [CrossRef]
- Davis, E.; Liu, Y.; Jiang, L.; Lu, Y.; Ndao, S. Wetting characteristics of 3-dimensional nanostructured fractal surfaces. Appl. Surf. Sci. 2017, 392, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Tuteja, A.; Choi, W.; Mabry, J.M.; McKinley, G.H.; Cohen, R.E. COLL 19-Designing superoleophobic surfaces with fluoroPOSS. Abstr. Pap. Am. Chem. Soc. 2007, 234. [Google Scholar]
- Ahuja, A.; Taylor, J.A.; Lifton, V.; Sidorenko, A.A.; Salamon, T.R.; Lobaton, E.J.; Kolodner, P.; Krupenkin, T.N. Nanonails: A simple geometrical appraoch to electrically tunable superlyophobic surfaces. Langmuir 2008, 24, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, X.; Jin, H.; Li, W. Understanding superhydrophobic behaviors on hydrophilic materials: A thermodynamic approach. Mater. Res. Express 2021, 8, 076403. [Google Scholar] [CrossRef]
- Pang, X.; Hao, L. Research on the Wettability of Hemisphere Surface. Mater. Rev. B 2013, 27, 150–153. [Google Scholar]
- Kwon, Y.; Choi, S.; Anantharaju, N.; Lee, J.; Panchagnula, M.V.; Patankar, N.A. Is the Cassie−Baxter Formula Relevant? Langmuir 2010, 26, 17528–17531. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; McCarthy, T.J. How Wenzel and Cassie Were Wrong. Langmuir 2007, 23, 3762–3765. [Google Scholar] [CrossRef]
- Extrand, C.W. Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces. Langmuir 2002, 18, 7991–7999. [Google Scholar] [CrossRef]
- Öner, D.; McCarthy, T.J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000, 16, 7777–7782. [Google Scholar] [CrossRef]
- Butt, H.-J.; Roisman, I.; Brinkmann, M.; Papadopoulos, P.; Vollmer, D.; Semprebon, C. Characterization of super liquid-repellent surfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, P.; Mammen, L.; Deng, X.; Vollmer, D.; Butt, H.J. How superhydrophobicity breaks down. In Proceedings of the National Academy of Sciences of the United States of America, Princeton, NJ, USA, 4 February 2013; pp. 3254–3258. [Google Scholar]
- Teisala, H.; Butt, H.-J. Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. Langmuir 2018, 35, 10689–10703. [Google Scholar] [CrossRef]
- Teisala, H.; Geyer, F.; Haapanen, J.; Juuti, P.; Mäkelä, J.M.; Vollmer, D.; Butt, H.-J. Ultrafast Processing of Hierarchical Nanotexture for a Transparent Superamphiphobic Coating with Extremely Low Roll-Off Angle and High Impalement Pressure. Adv. Mater. 2018, 30, e1706529. [Google Scholar] [CrossRef] [Green Version]
- Tretyakov, N.; Papadopoulos, P.; Vollmer, D.; Duenweg, B.; Daoulas, K.C.; Butt, H.-J. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory. J. Chem. Phys. 2016, 145, 134703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patankar, N.A. Transition between Superhydrophobic States on Rough Surfaces. Langmuir 2004, 20, 7097–7102. [Google Scholar] [CrossRef] [PubMed]
- Patankar, N.A. Consolidation of Hydrophobic Transition Criteria by Using an Approximate Energy Minimization Approach. Langmuir 2010, 26, 8941–8945. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Varanasi, K.K.; Hsu, M.; Bhate, N.; Keimel, C.; Stein, J.; Blohm, M.L. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 2009, 94, 133109. [Google Scholar] [CrossRef] [Green Version]
- Extrand, C.W. Contact Angles and Their Hysteresis as a Measure of Liquid−Solid Adhesion. Langmuir 2004, 20, 4017–4021. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.C.; Bhushan, B. Wetting transition of water droplets on superhydrophobic patterned surfaces. Scr. Mater. 2007, 57, 1057–1060. [Google Scholar] [CrossRef]
- Kusumaatmaja, H.; Blow, M.; Dupuis, A.; Yeomans, J. The collapse transition on superhydrophobic surfaces. Eur. Lett. 2008, 81, 36003. [Google Scholar] [CrossRef] [Green Version]
- Reyssat, M.; Pépin, A.; Marty, F.; Chen, Y.; Quéré, D. Bouncing transitions on microtextured materials. Eur. Lett. 2006, 74, 306–312. [Google Scholar] [CrossRef]
- Ren, W. Wetting Transition on Patterned Surfaces: Transition States and Energy Barriers. Langmuir 2014, 30, 2879–2885. [Google Scholar] [CrossRef]
- Whyman, G.; Bormashenko, E. How to Make the Cassie Wetting State Stable? Langmuir 2011, 27, 8171–8176. [Google Scholar] [CrossRef]
- Dupre, A. Theorie Mecanique de La Chaleur; Gauthier-Villars: Pairs, France, 1869; pp. 8941–8945. [Google Scholar]
- Zheng, Q.-S.; Yu, Y.; Zhao, Z.-H. Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces. Langmuir 2005, 21, 12207–12212. [Google Scholar] [CrossRef] [PubMed]
- Extrand, C.W. Modeling of Ultralyophobicity: Suspension of Liquid Drops by a Single Asperity. Langmuir 2005, 21, 10370–10374. [Google Scholar] [CrossRef] [PubMed]
- Extrand, C.W. Designing for Optimum Liquid Repellency. Langmuir 2006, 22, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Amirfazli, A.; Neumann, A.W. Status of the three-phase line tension. Adv. Colloid Interface Sci. 2004, 110, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Marmur, A. Line Tension and the Intrinsic Contact Angle in Solid–Liquid–Fluid Systems. J. Colloid Interface Sci. 1997, 186, 462–466. [Google Scholar] [CrossRef]
- Checco, A.; Guenoun, P.; Daillant, J. Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvature. Phys. Rev. Lett. 2003, 91, 186101. [Google Scholar] [CrossRef] [Green Version]
- Pompe, T.; Fery, A.; Herminghaus, S. Measurement of contact line tension by analysis of the three-phase boundary with nanometer resolution. In Proceedings of the International Symposium on Apparent and Microscopic Contact Angles in Conjunction with the 216th American-Chemical-Society Meeting, Boston, MA, USA, 23 August 1998; pp. 3–12. [Google Scholar]
- Lei, L.; Li, H.; Shi, J.; Chen, Y. Diffraction Patterns of a Water-Submerged Superhydrophobic Grating under Pressure. Langmuir 2009, 26, 3666–3669. [Google Scholar] [CrossRef]
- Priest, C.; Albrecht, T.W.J.; Sedev, R.; Ralston, J. Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces. Langmuir 2009, 25, 5655–5660. [Google Scholar] [CrossRef]
- Anantharaju, N.; Panchagnula, M.V.; Vedantam, S. Asymmetric Wetting of Patterned Surfaces Composed of Intrinsically Hysteretic Materials. Langmuir 2009, 25, 7410–7415. [Google Scholar] [CrossRef]
- Lv, P.; Xue, Y.; Liu, H.; Shi, Y.; Xi, P.; Lin, H.; Duan, H. Symmetric and Asymmetric Meniscus Collapse in Wetting Transition on Submerged Structured Surfaces. Langmuir 2014, 31, 1248–1254. [Google Scholar] [CrossRef]
- Fetzer, R.; Ralston, J. Exploring Defect Height and Angle on Asymmetric Contact Line Pinning. J. Phys. Chem. C 2011, 115, 14907–14913. [Google Scholar] [CrossRef]
- Giacomello, A.; Chinappi, M.; Meloni, S.; Casciola, C.M. Metastable Wetting on Superhydrophobic Surfaces: Continuum and Atomistic Views of the Cassie-Baxter–Wenzel Transition. Phys. Rev. Lett. 2012, 109, 226102. [Google Scholar] [CrossRef] [PubMed]
- Giacomello, A.; Meloni, S.; Chinappi, M.; Casciola, C.M. Cassie-Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir 2012, 28, 10764–10772. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ha, M.Y.; Jang, J. Wetting Transition of a Cylindrical Cavity Engraved on a Hydrophobic Surface. J. Phys. Chem. C 2018, 122, 2122–2126. [Google Scholar] [CrossRef]
- Byun, D.; Hong, J.; Saputra; Ko, J.H.; Lee, Y.J.; Park, H.C.; Byun, B.-K.; Lukes, J.R. Wetting Characteristics of Insect Wing Surfaces. J. Bionic Eng. 2009, 6, 63–70. [Google Scholar] [CrossRef]
- Bormashenko, E.; Gendelman, O.; Whyman, G. Superhydrophobicity of Lotus Leaves versus Birds Wings: Different Physical Mechanisms Leading to Similar Phenomena. Langmuir 2012, 28, 14992–14997. [Google Scholar] [CrossRef]
- Zu, Y.Q.; Yan, Y.Y.; Li, J.Q.; Han, Z.W. Wetting Behaviours of a Single Droplet on Biomimetic Micro Structured Surfaces. J. Bionic Eng. 2010, 7, 191–198. [Google Scholar] [CrossRef]
- Yin, L.; Zhu, L.; Wang, Q.; Ding, J.; Chen, Q. Superhydrophobicity of Natural and Artificial Surfaces under Controlled Condensation Conditions. ACS Appl. Mater. Interfaces 2011, 3, 1254–1260. [Google Scholar] [CrossRef]
- Ju, L.; Xiao, H.; Ye, L.; Hu, A.; Li, M. Wettability evolution of different nanostructured cobalt films based on electrodeposition. Micro Nano Lett. 2017, 12, 470–473. [Google Scholar] [CrossRef]
- Vüllers, F.; Peppou-Chapman, S.; Kavalenka, M.N.; Hölscher, H.; Neto, C. Effect of repeated immersions and contamination on plastron stability in superhydrophobic surfaces. Phys. Fluids 2019, 31, 012102. [Google Scholar] [CrossRef]
- Bormashenko, E. Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 2015, 222, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Hemeda, A.A.; Gad-El-Hak, M.; Tafreshi, H.V. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves. Phys. Fluids 2014, 26, 082103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, J.; Zhang, X. Effects of the Hierarchical Structure of Rough Solid Surfaces on the Wetting of Microdroplets. Langmuir 2013, 29, 6652–6658. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, J.S. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces. J. Mech. Sci. Technol. 2016, 30, 3741–3747. [Google Scholar] [CrossRef]
- Shen, Y.; Tao, J.; Tao, H.; Chen, S.; Pan, L.; Wang, T. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions. Soft Matter 2015, 11, 3806–3811. [Google Scholar] [CrossRef]
- Teisala, H.; Tuominen, M.; Aromaa, M.; Stepien, M.; Mäkelä, J.M.; Saarinen, J.J.; Toivakka, M.; Kuusipalo, J. Nanostructures Increase Water Droplet Adhesion on Hierarchically Rough Superhydrophobic Surfaces. Langmuir 2012, 28, 3138–3145. [Google Scholar] [CrossRef]
- Liang, W.; He, L.; Wang, F.; Yang, B.; Wang, Z. A 3-D model for thermodynamic analysis of hierarchical structured superhydrophobic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2017, 523, 98–105. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 2009, 14, 270–280. [Google Scholar] [CrossRef]
- Hejazi, V.; Nosonovsky, M. Contact angle hysteresis in multiphase systems. Colloid Polym. Sci. 2012, 291, 329–338. [Google Scholar] [CrossRef]
- Cai, M.; Li, Y.; Chen, Y.; Xu, J.; Zhang, L.; Lei, J. Wettability Transition of a Liquid Droplet on Solid Surface With Nanoscale Inverted Triangular Grooves. In Proceedings of the ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer, Dalian, China, 8–10 July 2019. [Google Scholar]
- Dufour, R.; Saad, N.; Carlier, J.; Campistron, P.; Nassar, G.; Toubal, M.; Boukherroub, R.; Senez, V.; Nongaillard, B.; Thomy, V. Acoustic Tracking of Cassie to Wenzel Wetting Transitions. Langmuir 2013, 29, 13129–13134. [Google Scholar] [CrossRef]
- Liu, Y.; Xiu, Y.; Hess, D.W.; Wong, C.P. Silicon surface structure-controlled olephobicity. Langmuir 2010, 26, 8908–8913. [Google Scholar] [CrossRef] [PubMed]
- Savoy, E.S.; Escobedo, F.A. Simulation Study of Free-Energy Barriers in the Wetting Transition of an Oily Fluid on a Rough Surface with Reentrant Geometry. Langmuir 2012, 28, 16080–16090. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, K.; Zhao, Y.-P. The effect of sharp solid edges on the droplet wettability. J. Colloid Interface Sci. 2019, 552, 563–571. [Google Scholar] [CrossRef]
- Bobji, M.S.; Kumar, S.V.; Asthana, A.N.R. Govardhan, Underwater Sustainability of the “Cassie” State of Wetting. Langmuir 2009, 25, 12120–12126. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, P.; Nikolajeff, F.; Karlsson, M. Cassie–Wenzel and Wenzel–Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter 2010, 7, 104–109. [Google Scholar] [CrossRef]
- Moulinet, S.; Bartolo, D. Life and death of a fakir droplet: Impalement transitions on superhydrophobic surfaces. Eur. Phys. J. E 2007, 24, 251–260. [Google Scholar] [CrossRef]
- Sakai, M.; Yanagisawa, T.; Nakajima, A.; Kameshima, Y.; Okada, K. Effect of Surface Structure on the Sustainability of an Air Layer on Superhydrophobic Coatings in a Water−Ethanol Mixture. Langmuir 2008, 25, 13–16. [Google Scholar] [CrossRef]
- Xue, Y.; Lv, P.; Lin, H.; Duan, H. Underwater Superhydrophobicity: Stability, Design and Regulation, and Applications. Appl. Mech. Rev. 2016, 68, 030803. [Google Scholar] [CrossRef]
- Rathgen, H.; Mugele, F. Microscopic shape and contact angle measurement at a superhydrophobic surface. Faraday Discuss. 2010, 146, 49–56. [Google Scholar] [CrossRef]
- Luo, C.; Zheng, H.; Wang, L.; Fang, H.; Hu, J.; Fan, C.; Cao, Y.; Wang, J. Direct Three-Dimensional Imaging of the Buried Interfaces between Water and Superhydrophobic Surfaces. Angew. Chem. Int. Ed. 2010, 49, 9145–9148. [Google Scholar] [CrossRef]
- Papadopoulos, P.; Deng, X.; Mammen, L.; Drotlef, D.-M.; Battagliarin, G.; Li, C.; Müllen, K.; Landfester, K.; Del Campo, A.; Butt, H.-J.; et al. Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir 2012, 28, 8392–8398. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.; Pacheco, S.; Pirat, C.; Lefferts, L.; Lohse, D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir 2009, 25, 12293–12298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, X.; Schellenberger, F.; Papadopoulos, P.; Vollmer, D.; Butt, H.-J. Liquid Drops Impacting Superamphiphobic Coatings. Langmuir 2013, 29, 7847–7856. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Li, J.; Liu, Y.; Zhou, X.; Liu, Y.; Liu, R.; Che, L.; Zhou, W.; Sun, D.; Li, L.; et al. Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. Nat. Commun. 2015, 6, 7986. [Google Scholar] [CrossRef] [PubMed]
- Cannon, A.H.; King, W.P. Visualizing contact line phenomena on microstructured superhydrophobic surfaces. J. Vac. Sci. Technol. B 2010, 28, L21–L24. [Google Scholar] [CrossRef]
- Rykaczewski, K.; Landin, T.; Walker, M.L.; Scott, J.H.J.; Varanasi, K.K. Direct Imaging of Complex Nano- to Microscale Interfaces Involving Solid, Liquid, and Gas Phases. ACS Nano 2012, 6, 9326–9334. [Google Scholar] [CrossRef]
- Wiedemann, S.; Plettl, A.; Walther, P.; Ziemann, P. Freeze Fracture Approach to Directly Visualize Wetting Transitions on Nanopatterned Superhydrophobic Silicon Surfaces: More than a Proof of Principle. Langmuir 2013, 29, 913–919. [Google Scholar] [CrossRef]
- Li, S.; Lamant, S.; Carlier, J.; Toubal, M.; Campistron, P.; Xu, X.; Vereecke, G.; Senez, V.; Thomy, V.; Nongaillard, B. High-Frequency Acoustic for Nanostructure Wetting Characterization. Langmuir 2014, 30, 7601–7608. [Google Scholar] [CrossRef]
- Su, J.; Esmaeilzadeh, H.; Wang, P.; Ji, S.; Inalpolat, M.; Charmchi, M.; Sun, H. Effect of wetting states on frequency response of a micropillar-based quartz crystal microbalance. Sens. Actuators A Phys. 2018, 286, 115–122. [Google Scholar] [CrossRef]
- Sudeepthi, A.; Yeo, L.; Sen, A.K. Cassie–Wenzel wetting transition on nanostructured superhydrophobic surfaces induced by surface acoustic waves. Appl. Phys. Lett. 2020, 116, 093704. [Google Scholar] [CrossRef]
- Ensikat, H.J.; Schulte, A.J.; Koch, K.; Barthlott, W. Droplets on Superhydrophobic Surfaces: Visualization of the Contact Area by Cryo-Scanning Electron Microscopy. Langmuir 2009, 25, 13077–13083. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, X.; Lan, Z. Dynamic Behavior of the Water Droplet Impact on a Textured Hydrophobic/Superhydrophobic Surface: The Effect of the Remaining Liquid Film Arising on the Pillars’ Tops on the Contact Time. Langmuir 2010, 26, 4831–4838. [Google Scholar] [CrossRef] [PubMed]
Method | Principle | Merits | Reference |
---|---|---|---|
Optical reflection | Different wetting states show different light reflection intensity | Simplest and direct | [8,110,111,112,113,114] |
Optical diffraction | Change in diffraction pattern reflects the change in gas layer thickness | The shape of the liquid–gas interface can be calculated | [82,115] |
Confocal laser scanning microscopy | Scanning the samples by fault section, and three-dimensional reconstruction | Real-time observation of wetting state transition process | [16,61,116,117,118] |
High-speed camera | Very short exposure time | High temporal resolution | [11,118,119,120] |
Freeze fracture | a certain interface was immersed in liquid nitrogen, and the droplet is frozen rapidly | Small applicable scale for nano-scale microstructure surface | [121,122,123] |
Acoustic | The differences of reflection of longitudinal acoustic waves at the composite interface | Versatile and integrable | [106,124,125,126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fu, C.; Zhang, C.; Qiu, Z.; Wang, B. A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods. Materials 2022, 15, 4747. https://doi.org/10.3390/ma15144747
Wang X, Fu C, Zhang C, Qiu Z, Wang B. A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods. Materials. 2022; 15(14):4747. https://doi.org/10.3390/ma15144747
Chicago/Turabian StyleWang, Xiao, Cheng Fu, Chunlai Zhang, Zhengyao Qiu, and Bo Wang. 2022. "A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods" Materials 15, no. 14: 4747. https://doi.org/10.3390/ma15144747
APA StyleWang, X., Fu, C., Zhang, C., Qiu, Z., & Wang, B. (2022). A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods. Materials, 15(14), 4747. https://doi.org/10.3390/ma15144747