Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater
Abstract
:1. Introduction
2. The Architecture and Theoretical Analysis of the Problem
3. Results and Discussion
3.1. Effect of Increasing the Thickness of Defect Layer Region at θ = 0°
3.2. Effect of Increasing the Incident Angle with dc = 125 nm
3.3. Effect of Increasing the Volume Fraction of Ag Nanoparticles of Nano Composite Material Layers with dc = 125 nm and θ = 0°
3.4. Defining the Parameters for Evaluation of the Performance of the Proposed Bio-Alcohol Sensor
3.5. Analysis of Bio-Alcohol Sensor for Achieving Optimum Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aly, A.H.; Awasthi, S.K.; Mohamed, A.M.; Al-Dossari, M.; Matar, Z.S.; Mohaseb, M.A.; El-Gawaad, N.S.A.; Amin, A.F. 1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones. Phys. Scr. 2021, 96, 125533. [Google Scholar] [CrossRef]
- Aly, A.H.; Awasthi, S.K.; Mohamed, D.; Matar, Z.S.; Al-Dossari, M.; Amin, A.F. Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC Adv. 2021, 11, 32973–32980. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Sharma, V.; Sharma, R. Design and Study of a Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance. In Optical and Wireless Technologies; Springer: Singapore, 2019; pp. 551–558. [Google Scholar]
- Ye, M.; Chien, P.-J.; Toma, K.; Arakawa, T.; Mitsubayashi, K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens. Bioelectron. 2015, 73, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, F.; Dennis, J.O.; Seong, K.C.; Ahmed, A.Y.; Ferrell, T.L.; Fen, Y.W.; Sadrolhosseini, A.R.; Ayodele, O.B.; Meriaudeau, F.; Saidu, A. Enhanced Sensitivity of Surface Plasmon Resonance Biosensor Functionalized with Doped Polyaniline Composites for the Detection of Low-Concentration Acetone Vapour. J. Sens. 2019, 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Englehardt, J. Electrochemical oxidation for landfill leachate treatment. Waste Manag. 2007, 27, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 2010, 261, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Bhat, M.P.; Patil, P.; Nataraj, S.; Altalhi, T.; Jung, H.-Y.; Losic, D.; Kurkuri, M.D. Turmeric, naturally available colorimetric receptor for quantitative detection of fluoride and iron. Chem. Eng. J. 2016, 303, 14–21. [Google Scholar] [CrossRef]
- Patil, P.; Bhat, M.P.; Gatti, M.G.; Kabiri, S.; Altalhi, T.; Jung, H.-Y.; Losic, D.; Kurkuri, M. Chemodosimeter functionalized diatomaceous earth particles for visual detection and removal of trace mercury ions from water. Chem. Eng. J. 2017, 327, 725–733. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Mesa, J.J.M.; Arias, J.A.G.; Sarmiento, H.A.R.; González, O.E.C. Photocatalytic degradation of Phenol, Catechol and Hydroquinone over Au-ZnO nanomaterials. Rev. Fac. Ing. Univ. Antioq. 2019, 94, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Saasa, V.; Malwela, T.; Beukes, M.; Mokgotho, M.; Liu, C.-P.; Mwakikunga, B. Sensing Technologies for Detection of Acetone in Human Breath for Diabetes Diagnosis and Monitoring. Diagnostics 2018, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.G.; Mekis, A.; Fan, S.; Joannopoulos, J.D. Molding the flow of light. Comput. Sci. Eng. 2001, 3, 38–47. [Google Scholar] [CrossRef]
- Aly, A.H.; Mohamed, D. BSCCO/SrTiO3 One Dimensional Superconducting Photonic Crystal for Many Applications. J. Supercond. Nov. Magn. 2015, 18, 1699–1703. [Google Scholar] [CrossRef]
- Awad, M.A.; Aly, A.H. Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceram. Int. 2019, 45, 19036–19043. [Google Scholar] [CrossRef]
- Qutb, S.R.; Aly, A.H.; Sabra, W. Salinity and temperature detection for seawater based on a 1D-defective photonic crystal material. Int. J. Mod. Phys. B 2021, 35, 2150012. [Google Scholar] [CrossRef]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [Green Version]
- Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.; Awasthi, S.K.; Aly, A.H. Biophotonic sensor design using a 1D defective annular photonic crystal for the detection of creatinine concentration in blood serum. RSC Adv. 2021, 11, 26655–26665. [Google Scholar] [CrossRef]
- Matar, Z.S.; Al-Dossari, M.; Awasthi, S.K.; Mohamed, D.; Abd El-Gawaad, N.S.; Aly, A.H. Conventional Biophotonic Sensing Approach for Sensing and Detection of Normal and Infected Samples Containing Different Blood Components. Crystals 2022, 12, 650. [Google Scholar] [CrossRef]
- Cunningham, B.T.; Laing, L. Microplate-based, label-free detection of biomolecular interactions: Applications in proteomics. Expert Rev. Proteom. 2006, 3, 271–281. [Google Scholar] [CrossRef]
- Soukoulis, C.M. (Ed.) Photonic Crystals and Light Localization in the 21st Century; Springer Science & Business Media: Dordrecht, The Netherlands, 2001. [Google Scholar] [CrossRef] [Green Version]
- Vetrov, S.Y.; Avdeeva, A.Y.; Timofeev, I.V. Spectral properties of a one-dimensional photonic crystal with a resonant defect nanocomposite layer. J. Exp. Theor. Phys. 2011, 113, 755–761. [Google Scholar] [CrossRef]
- Ramanujam, N.; Wilson, K.J. Optical properties of silver nanocomposites and photonic band gap–Pressure dependence. Opt. Commun. 2016, 368, 174–179. [Google Scholar] [CrossRef]
- Dyachenko, P.N.; Miklyaev, Y.V. One-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric. Opt. Mem. Neural Netw. 2007, 16, 198–203. [Google Scholar] [CrossRef]
- Zaky, A.; Aly, A.H. Modeling of Terahertz Novel Biosensor by Porous Silicon-Based Photonic Crystal Cavity Using Tamm Resonance Excited by Graphene. Appl. Opt. 2021, 60, 1411–1419. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Aly, A.H. Metallic and Superconducting Photonic Crystal. J. Supercond. Nov. Magn. 2008, 21, 421–425. [Google Scholar] [CrossRef]
- Asadi, R.; Mohammad, M.M.; Tavassoly, M.T. Fabrication of Metal Nanocomposite Photonic Crystal for Switching. IEEE Photonics Technol. Lett. 2011, 23, 1436–1438. [Google Scholar] [CrossRef]
- Upadhyay, M.; Lego, S.U. American International Journal of Research in Sciences, Technology, Engineering and Mathematics (AIJRSTEM). Iasir J. 2017, 20, 77–79. [Google Scholar]
- Zeng, C.Z.C.; Luo, C.L.C.; Hao, L.H.L.; Xie, Y.X.Y. The research on magnetic tunable characteristics of photonic crystal defect localized modes with a defect layer of nanoparticle magnetic fluids. Chin. Opt. Lett. 2014, 12, S11602. [Google Scholar] [CrossRef]
- Armstrong, E.; O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures–fundamentals and applications from optics to energy storage. J. Mater. Chem. C 2015, 3, 6109–6143. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, Z.; Lu, N.; Zhu, J.; Jin, G. Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Opt. Commun. 2008, 281, 1725–1731. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A. Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor. Cryogenics 2019, 204, 199001. [Google Scholar] [CrossRef]
- White, I.M.; Fan, X. On the performance quantification of resonant refractive index sensors. Opt. Express 2008, 16, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Beheiry, M.; Liu, V.; Fan, S.; Levi, O. Sensitivity enhancement in photonic crystal slab biosensors. Opt. Express 2010, 18, 22702. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Ismaeel, M.; Abdel-Rahman, E. Comparative Study of the One Dimensional Dielectric and Metallic Photonic Crystals. Opt. Photonics J. 2012, 2, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, K.-Q. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors. Sensors 2013, 13, 4192–4213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cao, T.; Li, Z.G.; Qin, K.R.; Yan, W.P. Study of photonic crystal cavity sensor integrated with microfluidic channel in the visible region. In Advanced Sensor Systems and Applications V, Proceedings of the Photonics Asia, Beijing, China, 4–7 November 2012; SPIE: Bellingham WA, USA, 2013; Volume 8561, p. 85610A. [Google Scholar] [CrossRef]
- Singh, S.; Sinha, R.K.; Bhattacharyya, R. Photonic crystal slab waveguide-based infiltrated liquid sensors: Design and analysis. J. Nanophotonics 2011, 5, 053505. [Google Scholar] [CrossRef]
- Bougriou, F.; Bouchemat, T.; Bouchemat, M.; Paraire, N. High sensitivity of sensors based on two-dimensional photonic crystal. In Proceedings of the 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), Riyadh, Saudi Arabia, 24 April 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Dutta, H.S.; Pal, S. Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt. Quantum Electron. 2013, 45, 907–917. [Google Scholar] [CrossRef]
- Harhouz, A.; Hocini, A. Design of high-sensitive biosensor based on cavity-waveguides coupling in 2D photonic crystal. J. Electromagn. Waves Appl. 2015, 29, 659–667. [Google Scholar] [CrossRef]
- Mehdi, G.; Hocini, A. Design of Bio-alcohol Sensor Based on Two-Dimensional Photonic Crystal in a Nanophotonic Structure. In Proceedings of the 2019 International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 19–21 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
Acetone Concentration (c in %) | Refractive Index of Water Mixture (nc) |
---|---|
0 | 1.340 |
10 | 1.341 |
20 | 1.343 |
30 | 1.345 |
40 | 1.350 |
50 | 1.356 |
60 | 1.358 |
70 | 1.364 |
80 | 1.367 |
90 | 1.368 |
Organic Materials | Refractive Index (nc) |
---|---|
Methanol | 1.33 |
Acetone | 1.3256 |
Ethanol | 1.3602 |
Propanol | 1.3750 |
Butanol | 1.3968 |
Pentanol | .4087 |
Chloroform | 1.444 |
Phenol | 1.542 |
Sample Details | nc | λc (nm) | λFWHM (nm) | S (nm/RIU) | Q | FoM | |
---|---|---|---|---|---|---|---|
Water | 1.33 | 438.9 | 0.5 | - | 877.8 | - | 5.696 |
Methanol | 1.3256 | 437.9 | 0.4 | 227.27 | 1094.75 | 568.175 | 4.5672 |
Acetone | 1.3445 | 441.9 | 0.5 | 206.896 | 883.8 | 413.792 | 5.6573 |
Ethanol | 1.3602 | 445.2 | 0.5 | 208.60 | 890.4 | 417.2 | 5.6154 |
Propanol | 1.3750 | 448.4 | 0.5 | 211.11 | 896.8 | 422.22 | 5.5753 |
Butanol | 1.3968 | 453 | 0.4 | 211.077 | 1132.5 | 527.6925 | 8.83002 |
Pentanol | 1.4087 | 455.6 | 0.5 | 212.198 | 911.2 | 424.396 | 10.974 |
Chloroform | 1.444 | 463.5 | 0.6 | 215.33 | 772.5 | 358.8833 | 6.4724 |
Phenol | 1.542 | 485.4 | 0.4 | 219.33 | 1213.5 | 548.325 | 4.1203 |
Sample Details | nc | λc (nm) | λFWHM (nm) | S (nm/RIU) | Q × 103 | FoM × 103 | |
---|---|---|---|---|---|---|---|
Water | 1.33 | 489.1 | 0.1 | - | 4.891 | - | 1.022 |
Methanol | 1.3256 | 487.7 | 0.2 | 318.18 | 2.4385 | 1.5909 | 2.0504 |
Acetone | 1.3445 | 493.5 | 0.1 | 303.44 | 4.935 | 3.0344 | 1.01317 |
Ethanol | 1.3602 | 498.4 | 0.2 | 308 | 2.492 | 1.53973 | 2.0064 |
Propanol | 1.3750 | 502.9 | 0.2 | 306.666 | 2.5145 | 1.5333 | 1.988 |
Butanol | 1.3968 | 509.6 | 0.1 | 307 | 5.096 | 3.0688 | 0.981169 |
Pentanol | 1.4087 | 513.2 | 0.1 | 306.22 | 5.132 | 3.0622 | 0.974279 |
Chloroform | 1.444 | 523.8 | 0.2 | 304.38 | 2.619 | 1.5219 | 1.90912 |
Phenol | 1.542 | 551.5 | 0.2 | 294.33 | 2.7575 | 1.4716 | 1.813236 |
Sample Details | nc | λc (nm) | λFWHM (nm) | S (nm/RIU) | Q × 103 | FoM × 103 | |
---|---|---|---|---|---|---|---|
Water | 1.33 | 544.8 | 0.2 | - | 2.724 | - | 1.8355 |
Methanol | 1.3256 | 542.8 | 0.2 | 454.545 | 2.714 | 2.27272 | 1.84229 |
Acetone | 1.3445 | 551.3 | 0.2 | 448.27 | 2.7565 | 2.24135 | 2.23079 |
Ethanol | 1.3602 | 558.3 | 0.2 | 447.019 | 2.7915 | 2.23595 | 2.23618 |
Propanol | 1.3750 | 564.7 | 0.2 | 442.222 | 2.8235 | 2.21111 | 2.2613 |
Butanol | 1.3968 | 573.5 | 0.3 | 429.644 | 1.91166 | 1.43214 | 3.4912 |
Pentanol | 1.4087 | 578.2 | 0.3 | 424.396 | 1.92733 | 1.41465 | 3.5344 |
Chloroform | 1.444 | 591.8 | 0.3 | 412.28 | 1.97266 | 1.37426 | 3.638 |
Phenol | 1.542 | 623.1 | 0.8 | 369.339 | 0.77887 | 0.46167 | 10.8304 |
Sample Details | nc | λc (nm) | λFWHM (nm) | S (nm/RIU) | Q × 103 | FoM × 103 | |
---|---|---|---|---|---|---|---|
Water | 1.33 | 525.8 | 0.2 | - | 2.629 | - | 19.018 |
Methanol | 1.3256 | 523.6 | 0.1 | 500 | 5.236 | 5.000 | 95.4927 |
Acetone | 1.3445 | 533 | 0.1 | 496.55 | 5.330 | 4.9655 | 93.808 |
Ethanol | 1.3602 | 540.6 | 0.1 | 490.06 | 5.406 | 4.9006 | 9.24898 |
Propanol | 1.3750 | 547.7 | 0.1 | 486.66 | 5.477 | 4.8666 | 9.12908 |
Butanol | 1.3968 | 557.5 | 0.1 | 474.55 | 5.575 | 4.7455 | 8.968 |
Pentanol | 1.4087 | 562.9 | 0.3 | 471.41 | 1.8763 | 1.5713 | 26.6477 |
Chloroform | 1.444 | 577.6 | 0.3 | 454.385 | 1.9253 | 1.51461 | 25.9695 |
Phenol | 1.542 | 611.8 | 0.7 | 405.66 | 0.874 | 0.579514 | 57.208 |
Year | Ref. | Structure | S (nm/RIU) | DL (RIU) | FoM |
---|---|---|---|---|---|
2008 | [38] | Waveguide with microcavity | 330 | Not mention | Not mention |
2011 | [39] | PC waveguide | 240 | Not mention | Not mention |
2011 | [40] | PC slab waveguide | 200 | 1 × 10−3 | Not mention |
2012 | [41] | PC cavity biosensor | 35 | Not mention | Not mention |
2013 | [42] | PC waveguide | 260 | 0.001 | Not mention |
2015 | [43] | Waveguide with microcavity | 425 | 0.001 | Not mention |
2019 | [44] | 2D PC based Bio-alcohol sensor | Not mention | Not mention | Not mention |
2021 | This work | 1D PC based Bio-alcohol sensor | 500 | 1 × 10−5 | 5 × 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Dossari, M.; Awasthi, S.K.; Mohamed, A.M.; Abd El-Gawaad, N.S.; Sabra, W.; Aly, A.H. Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater. Materials 2022, 15, 4012. https://doi.org/10.3390/ma15114012
Al-Dossari M, Awasthi SK, Mohamed AM, Abd El-Gawaad NS, Sabra W, Aly AH. Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater. Materials. 2022; 15(11):4012. https://doi.org/10.3390/ma15114012
Chicago/Turabian StyleAl-Dossari, M., S. K. Awasthi, A. M. Mohamed, N. S. Abd El-Gawaad, W. Sabra, and Arafa H. Aly. 2022. "Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater" Materials 15, no. 11: 4012. https://doi.org/10.3390/ma15114012
APA StyleAl-Dossari, M., Awasthi, S. K., Mohamed, A. M., Abd El-Gawaad, N. S., Sabra, W., & Aly, A. H. (2022). Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater. Materials, 15(11), 4012. https://doi.org/10.3390/ma15114012