Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder
Abstract
:1. Introduction
2. Material and Test Program
2.1. Materials
2.2. Production of Modified Asphalt Binders
2.3. Superpave Binder Test
2.4. Multiple Stress Creep Recovery (MSCR)
2.5. Statistical Analysis
3. Results and Discussions
3.1. Rotational Viscosity
3.2. Dynamic Shear Rheometer Test
3.2.1. Original G*/Sin δ
3.2.2. RTFO G*/Sin δ
3.2.3. Multiple Stress Creep Recovery
3.2.4. PAV G*Sin δ
3.3. Bending Beam Rheometer (BBR) Test
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of rheological compatibility criteria to study SBS modified asphalts. J. Appl. Polym. Sci. 2003, 90, 1772–1782. [Google Scholar]
- Bazmara, B.; Tahersima, M.; Behravan, A. Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements. Constr. Build. Mater. 2018, 166, 1–11. [Google Scholar] [CrossRef]
- Hemmati, N.; Yun, J.; Mazumder, M.; Lee, M.S.; Lee, S.J. Laboratory Characterization of Asphalt Binders Modified with Styrene Butadiene Rubber (SBR). Materials 2021, 14, 7666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, Y.H.; Wen, Z.G. Influence of water-borne epoxy resin content on performance of waterborne epoxy resin compound SBR modified emulsified asphalt for tack coat. Constr. Build. Mater. 2017, 153, 774–782. [Google Scholar] [CrossRef]
- Hofko, B.; Hospodka, M. Rolling thin film oven test and pressure aging vessel conditioning parameters. J. Transp. Res. Board 2016, 2574, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review. Constr. Build. Mater. 2019, 225, 1012–1025. [Google Scholar] [CrossRef]
- Airey, G.D. State of the art report on ageing test methods for bituminous pavement materials. Int. J. Pavement Eng. 2003, 4, 165–176. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.H.; Kwon, O.; Han, J.Y.; Kim, Y.S.; Kim, K.W. Estimation of service life reduction of asphalt pavement due to short-term ageing measured by GPC from of asphalt mixture. Road Mater. Pavement Des. 2016, 17, 153–167. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Lee, S.J.; Lee, M.S. Characterization of recycled crumb rubber modified binders containing wax warm additives. J. Traffic Transp. Eng. 2018, 5, 197–206. [Google Scholar] [CrossRef]
- Gallu, R.; Méchin, F.; Dalmas, F.; Gérard, J.F.; Perrin, R.; Loup, F. Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU). Constr. Build. Mater. 2020, 259, 120404. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, X.; Zhang, M.; Fang, C. Investigation on the short-term aging-resistance of thermoplastic polyurethane-modified asphalt binders. Polymers 2018, 10, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, J. Influence on Polyurethane Synthesis Parameters upon the Performance of Base Asphalt. Front. Mater. 2021, 8, 88. [Google Scholar]
- Gallu, R.; Méchin, F.; Dalmas, F.; Gerard, J.F.; Perrin, R.; Loup, F. Investigating compatibility between TPU and bitumen SARA fractions by means of Hansen solubility parameters and interfacial tension measurements. Constr. Build. Mater. 2021, 289, 123151. [Google Scholar] [CrossRef]
- Xia, L.; Cao, D.; Zhang, H.; Guo, Y. Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt. Constr. Build. Mater. 2016, 112, 949–955. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Liu, H.; Peng, B.; Zhang, H.; Lv, W.; Zhang, Q.; Mao, Z. The synergistic effect of organic montmorillonite and thermoplastic polyurethane on properties of asphalt binder. Constr. Build. Mater. 2019, 229, 116867. [Google Scholar] [CrossRef]
- Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of asphalts modified with glycidylmethacrylate functionalized polymers. J. Colloid Interface Sci. 2004, 280, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.J.; Partal, P.; García-Morales, M.; Martinez-Boza, F.J.; Gallegos, C. Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer. Fuel 2007, 86, 2291–2299. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Jia, M.; Ban, X.; Wang, L.; Chen, L.; Huang, T.; Liu, H. Effects of Polyurethane Thermoplastic Elastomer on Properties of Asphalt Binder and Asphalt Mixture. J. Mater. Civ. Eng. 2021, 33, 04020477. [Google Scholar] [CrossRef]
- Kim, H.H.; Mazumder, M.; Lee, S.J.; Lee, M.S. Laboratory Evaluation of Sustainable PMA Binder Containing Styrene-Isoprene-Styrene (SIS) and Thermoplastic Polyurethane. Sustainability 2020, 12, 10057. [Google Scholar] [CrossRef]
- Kim, H. Characterization of Rubberized Binders with Wax Additives. Ph.D. Dissertation, Texas State University, San Marcos, TX, USA, 2016. [Google Scholar]
- Ott, R.L.; Longnecker, M.T. An Introduction to Statistical Methods and Data Analysis; Cengage Learning: Boston, MA, USA, 2008. [Google Scholar]
Aging States | Test Properties | Test Result |
---|---|---|
Unaged binder | Viscosity @ 135 °C (cP) | 538 |
G*/sin δ @ 64 °C (kPa) | 1.38 | |
RTFO aged residual | G*/sin δ @ 64 °C (kPa) | 3.82 |
RTFO + PAV aged residual | G*sin δ @ 25 °C (kPa) | 4402 |
Stiffness @ −12 °C (MPa) | 205 | |
m-value @ −12 °C | 0.323 |
Sieve Number (μm) | % Cumulative Passed of CRM |
---|---|
30 (600) | 100.0 |
40 (425) | 91.0 |
50 (300) | 59.1 |
80 (180) | 26.2 |
100 (150) | 18.3 |
200 (75) | 0.0 |
Properties | Test Method | Units | Typical Value |
---|---|---|---|
Density | ASTM D792 | lb/in3 | 0.0426 |
Hardness, Shore A | ASTM D2240 | - | 67 |
Tensile strength | ASTM D412 | psi | 2900 |
Elongation | ASTM D412 | % | 700 |
100% modulus | ASTM D412 | psi | 435 @ Strain 100% |
300% modulus | ASTM D412 | psi | 725 @ Strain 300% |
Tear strength | ASTM D624 | pli | 371 |
Abrasion | DIN Abrasion Loss; DIN 53516 | - | 40 |
Glass Transition Temp, Tg | DSC | °C | −42.0 |
Rotational Viscosity | TPU 0% | TPU 5% | |||||||
---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | N | S | S | S | S | S | S |
CRM 5% | - | N | S | S | S | S | S | ||
CRM 10% | - | S | S | S | S | S | |||
CRM 15% | - | S | S | S | N | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - |
G*/Sin δ at 70 °C | TPU 0% | TPU 5% | |||||||
---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | S | S | S | S | S | S | S |
CRM 5% | - | S | S | N | S | S | S | ||
CRM 10% | - | S | S | S | S | S | |||
CRM 15% | - | S | S | S | S | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - |
G*/Sin δ at 70 °C | TPU 0% | TPU 5% | |||||||
---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | S | S | S | N | N | S | S |
CRM 5% | - | S | S | S | S | N | S | ||
CRM 10% | - | S | S | S | S | S | |||
CRM 15% | - | S | S | S | N | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - |
Jnr for Orig. | TPU 0% | TPU 5% | |||||||
---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | N | S | S | N | S | S | S |
CRM 5% | - | S | S | N | S | S | S | ||
CRM 10% | - | S | S | S | S | S | |||
CRM 15% | - | S | S | S | S | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - | ||||||||
Jnr for RTFO. | TPU 0% | TPU 5% | |||||||
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | S | S | S | S | S | S | S |
CRM 5% | - | S | S | S | N | S | S | ||
CRM 10% | - | S | S | S | N | S | |||
CRM 15% | - | S | S | S | N | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - |
%rec for Orig. | TPU 0% | TPU 5% | |||||||
---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | N | S | S | N | S | S | S |
CRM 5% | - | S | S | N | S | S | S | ||
CRM 10% | - | S | S | S | S | S | |||
CRM 15% | - | S | S | S | S | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - | ||||||||
%rec for RTFO. | TPU 0% | TPU 5% | |||||||
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | ||
TPU 0% | CRM 0% | - | S | S | S | N | S | S | S |
CRM 5% | - | S | S | S | N | S | S | ||
CRM 10% | - | S | S | S | S | S | |||
CRM 15% | - | S | S | S | S | ||||
TPU 5% | CRM 0% | S | S | S | |||||
CRM 5% | - | S | S | ||||||
CRM 10% | - | S | |||||||
CRM 15% | - |
G*Sin δ | TPU 0% | TPU 5% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | |||
TPU 0% | CRM 0% | - | S | S | S | S | S | S | S | |
CRM 5% | - | S | S | S | S | S | S | |||
CRM 10% | - | S | N | N | S | S | ||||
CRM 15% | - | S | S | S | N | |||||
TPU 5% | CRM 0% | N | S | S | ||||||
CRM 5% | - | S | S | |||||||
CRM 10% | - | S | ||||||||
CRM 15% | - |
Stiffness | TPU 0% | TPU 5% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CRM 0% | CRM 5% | CRM 10% | CRM 15% | CRM 0% | CRM 5% | CRM 10% | CRM 15% | |||
TPU 0% | CRM 0% | - | N | S | S | N | S | S | S | |
CRM 5% | - | S | S | N | N | S | S | |||
CRM 10% | - | N | S | N | N | S | ||||
CRM 15% | - | S | S | N | N | |||||
TPU 5% | CRM 0% | N | S | S | ||||||
CRM 5% | - | S | S | |||||||
CRM 10% | - | N | ||||||||
CRM 15% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.; Mazumder, M.; Na, I.-H.; Lee, M.-S.; Kim, H.H. Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder. Materials 2022, 15, 3824. https://doi.org/10.3390/ma15113824
Yun J, Mazumder M, Na I-H, Lee M-S, Kim HH. Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder. Materials. 2022; 15(11):3824. https://doi.org/10.3390/ma15113824
Chicago/Turabian StyleYun, Jihyeon, Mithil Mazumder, Il-Ho Na, Moon-Sup Lee, and Hyun Hwan Kim. 2022. "Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder" Materials 15, no. 11: 3824. https://doi.org/10.3390/ma15113824
APA StyleYun, J., Mazumder, M., Na, I.-H., Lee, M.-S., & Kim, H. H. (2022). Evaluation of Effect of Thermoplastic Polyurethane (TPU) on Crumb Rubber Modified (CRM) Asphalt Binder. Materials, 15(11), 3824. https://doi.org/10.3390/ma15113824