Degradation Analyses of Systemic Large-Panel Buildings Using Comparative Testing during Demolition
Abstract
:1. Introduction
2. Investigations
2.1. Demolition Technology
2.2. Non-Destructive Tests
2.3. Destructive Tests
3. Discussion. Practical Aspects of Diagnostics
- concrete carbonation and insufficient concrete cover thickness of prefabricated elements;
- careless filling of the joints between the prefabricated elements;
- workmanship defects in welded joints;
- local corrosion of reinforcing steel; and
- exceeding of dimensional tolerance both in the prefabricated elements themselves and during assembly.
4. Conclusions
- to test the quality of concrete in vertical joints, it is recommended to use surface measurements of longitudinal wave velocity and B-scans;
- for one-sided access to the examined elements, surface scans using the Pulse-Echo method are helpful in detecting discontinuities and geometric deviations, as well as hidden installations;
- the quality and strength of concrete should be determined comparatively by sclerometric and ultrasound methods, and in case of discrepancies it is recommended to perform destructive tests;
- for testing the pH of concrete, it is recommended to take samples with small diameter diamond cores and then test under laboratory conditions;
- ferromagnetic testing is sufficient to determine the quality of the reinforcement work;
- the use of ultrasound method for crack penetration depth is helpful in monitoring crack propagation and making a possible decision to implement repair measures; and
- despite the development of technology, in practice there is still a lack of equipment allowing for the assessment of the degradation of joints hidden in structural elements, such as wall joints in large-panel buildings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krentowski, J.R. Assessment of Destructive Impact of Different Factors on Concrete Structures Durability. Materials 2021, 15, 225. [Google Scholar] [CrossRef] [PubMed]
- Folic, R. Durability design of concrete structures, Part 1: Analysis fundamentals. Facta Univ. Ser. Arch. Civ. Eng. 2009, 7, 1–18. [Google Scholar] [CrossRef]
- Folic, R.; Zenunovic, D. Durability design of concrete structures, Part 2: Modelling and structural assessment. Facta Univ. Ser. Arch. Civ. Eng. 2010, 8, 45–66. [Google Scholar] [CrossRef]
- Tofiluk, A.; Knyziak, P.; Krentowski, J. Revitalization of Twentieth-Century Prefabricated Housing Estates as Interdisciplinary Issue. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 112096. [Google Scholar] [CrossRef]
- Rodin, J.; Chanon, C. Safety in Large Panel Construction; IABSE Reports of the Working Commissions; Secretariat of IABSE in Zurich: London, UK, 1969. [Google Scholar]
- Lewicki, B. Building with Large Prefabricates; Elsevier: Amsterdam, The Netherlands, 1966. [Google Scholar]
- Folic, R.; Laban, M.; Milanko, V. Reliability and sustainability analysis of large panel residential buildings in Sofia, Skopje and Novi Sad. Facta Univ. Ser. Arch. Civ. Eng. 2011, 9, 161–176. [Google Scholar] [CrossRef]
- Dzierżewicz, Z.; Starosolski, W. Systemy Budownictwa Wielkopłytowego w Polsce w Latach 1970–1985; Oficyna Wolters Kluwer Business: Alphen aan den Rijn, The Netherlands, 2010. (In Polish) [Google Scholar]
- Knyziak, P. Nadbudowa prefabrykowanych budynków mieszkalnych w Warszawie. Mater. Bud. 2016, 1, 132–133. [Google Scholar] [CrossRef]
- Krentowski, J.; Knyziak, P.; Mackiewicz, M. Durability of interlayer connections in external walls in precast residential buildings. Eng. Fail. Anal. 2020, 121, 105059. [Google Scholar] [CrossRef]
- Knyziak, P.; Krentowski, J.R.; Bieranowski, P. Risks of the Durability of Large-Panel Buildings Elevations in Reference to the Conclusions from Technical Conditions Audits. MATEC Web Conf. 2017, 117, 00080. [Google Scholar] [CrossRef] [Green Version]
- Knyziak, P.; Bieranowski, P.; Krentowski, J.R. Impact of corrosion processes in the basement level on the durability of the construction of large-panel buildings. MATEC Web Conf. 2017, 117, 00081. [Google Scholar] [CrossRef] [Green Version]
- Girus, K. Evaluation of the condition of the external layer of walls in the national technological system “S-Sz” (Szczecin System) of large-panel prefabricated construction. MATEC Web Conf. 2019, 284, 07003. [Google Scholar] [CrossRef]
- Knyziak, P.; Kanoniczak, M.; Krentowski, J.; Wardach, M. Zagrożenia w Trakcie Eksploatacji, Dotyczące Elewacji Budynków Wielkopłytowych. Jak Naprawiać Błędy Systemu. Biul. Inf. 2020, 3, 16–19. (In Polish) [Google Scholar]
- Hrischev, L. Defects of Large Panel Prefabricated Buildings. In Proceedings of the 14th International Scientific Conference VSU’2014, Sofia, Bulgarian, 20–21 February 2014. (In Bulgarian). [Google Scholar]
- Knyziak, P. The Quality and Reliability in the Structural Design, Production, Execution and Maintenance of the Precast Residential Buildings in Poland in the Past and Now. Key Eng. Mater. 2016, 691, 420–431. [Google Scholar] [CrossRef]
- Knyziak, P.; Kanoniczak, M. Difficulties in Operation of Elevations in Large-Panel Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 661, 012059. [Google Scholar] [CrossRef]
- Ligęza, W. Naprawa i Wzmacnianie Budynków z Wielkiej Płyty. XXI Ogólnopolska Konferencja “Warsztat Pracy Projektanta Konstrukcji”, t. II; Polski Związek Inżynierów i Techników Budownictwa Oddział w Gliwicach: Ustroń, Poland, 2006. (In Polish) [Google Scholar]
- Ligęza, W. Budownictwo Wielkopłytowe Po Latach. Wybrane Problemy Remontowe (Large-Panel Buildings after Years of Exploitation. Selected Problems of Repairs). Bud. I Archit. 2014, 13, 15–25. (In Polish) [Google Scholar] [CrossRef]
- Ligęza, W. Renovation of Large-Panel Buildings in Context of Urban Renewal [Remonty Budynków Wielkopłytowych, Jako Element Rewitalizacji Miast]. Civ. Environ. Eng. Rep. 2015, 17, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Wardach, M.; Talipski, W. Analiza wybranych błędów projektowych i montażowych połączeń balustrad z płytami balkonowymi [Analysis of Selected Design and Assembly Errors in Connections of Balustrades with Balcony Slabs]. Builder 2021, 292, 18–21. [Google Scholar] [CrossRef]
- Kuusk, K.; Kalamees, T.; Link, S.; Ilomets, S.; Mikola, A. Case-study analysis of concrete large-panel apartment building at pre- and post low-budget energy-renovation. J. Civ. Eng. Manag. 2016, 23, 67–75. [Google Scholar] [CrossRef]
- Pihelo, P.; Kalamees, T.; Kuusk, K. nZEB Renovation of Multi-Storey Building with Prefabricated Modular Panels. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012056. [Google Scholar] [CrossRef]
- Pihelo, P.; Kalamees, T. The effect of thermal transmittance of building envelope and material selection of wind barrier on moisture safety of timber frame exterior wall. J. Build. Eng. 2016, 6, 29–38. [Google Scholar] [CrossRef]
- Podawca, K.; Pawłat-Zawrzykraj, A.; Dohojda, M. Analysis of the possibilities for improvement of thermal comfort of living quarters located in multi-family large-panel prefabricated buildings. E3S Web Conf. 2018, 44, 00145. [Google Scholar] [CrossRef]
- Szulc, J.; Piekarczuk, A. Diagnostics and technical condition assessment of large-panel residential buildings in Poland. J. Build. Eng. 2022, 50, 104144. [Google Scholar] [CrossRef]
- Cibis, J.; Nowogońska, B. Diagnosis of Transformation in Architecture and Construction of the Housing Stock in the Years 1848–2013 in Selected Cities Of Upper Silesia. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 052060. [Google Scholar] [CrossRef]
- Botici, A.A.; Ungureanu, V.; Ciutina, A.; Botici, A.; Dubina, D. Sustainable Retrofitting of Large Panel Prefabricated Concrete Residential Buildings. In Proceedings of the Central Europe Towards Sustainable Building 2013 Conference—Sustainable Building and Refurbishment for Next Generations, Prague, Czech Republic, 26–28 June 2013. [Google Scholar]
- Knyziak, P. The impact of construction quality on the safety of prefabricated multi-family dwellings. Eng. Fail. Anal. 2019, 100, 37–48. [Google Scholar] [CrossRef]
- Romano, E.; Iuorio, O.; Nikitas, N.; Negro, P. A Review of Retrofit Strategies for Large Panel System Buildings. In Proceedings of the Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision—Proceedings of the 6th International Symposium on Life-Cycle Civil Engineering, IALCCE, Ghent, Belgium, 28–31 October 2018; pp. 3023–3030. [Google Scholar]
- Wakili, K.G.; Dworatzyk, C.; Sanner, M.; Sengespeick, A.; Paronen, M.; Stahl, T. Energy efficient retrofit of a prefabricated concrete panel building (Plattenbau) in Berlin by applying an aerogel based rendering to its façades. Energy Build. 2018, 165, 293–300. [Google Scholar] [CrossRef]
- Wójtowicz, M.; Możaryn, T. Stan Techniczny Złączy i Prefabrykatów Budynku Wielkopłytowego Po 40 Latach Eksploatacji. In Proceedings of the XXVI Konferencja Naukowo-Techniczna Awarie Budowlane, Międzyzdroje, Poland, 21–24 May 2013. (In Polish). [Google Scholar]
- Baszeń, M.; Miedziałowski, C. An environmental impact on the condition of an unfinished building in the OWT technology. E3S Web Conf. 2018, 49, 00005. [Google Scholar] [CrossRef] [Green Version]
- Miedziałowski, C.; Baszeń, M. The Overview of Technical State of Unfinished Building Made of Large Panel Elements. Appl. Mech. Mater. 2018, 878, 219–223. [Google Scholar] [CrossRef]
- Guri, M.; Brzev, S.; Lluka, D. Performance of Prefabricated Large Panel Reinforced Concrete Buildings in the November 2019 Albania Earthquake. J. Earthq. Eng. 2021, 2021, 1887010. [Google Scholar] [CrossRef]
- Kazemi, M.; Madandoust, R.; de Brito, J. Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing. Constr. Build. Mater. 2019, 224, 630–638. [Google Scholar] [CrossRef]
- Elrazek, M.A.; Gamal, Y.A.S. The Reliable Concrete Compression Strength Assessment by SCHMIDT Hammer for Different Concrete Grades. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1171, 012004. [Google Scholar] [CrossRef]
- Kovler, K.; Wang, F.; Muravin, B. Testing of concrete by rebound method: Leeb versus Schmidt hammers. Mater. Struct. 2018, 51, 138. [Google Scholar] [CrossRef]
- Lee, B.J.; Kee, S.-H.; Oh, T.; Kim, Y.-Y. Evaluating the Dynamic Elastic Modulus of Concrete Using Shear-Wave Velocity Measurements. Adv. Mater. Sci. Eng. 2017, 2017, 1651753. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Yoon, Y.G.; Oh, T.K. Prediction of Concrete Strength with P-, S-, R-Wave Velocities by Support Vector Machine (SVM) and Artificial Neural Network (ANN). Appl. Sci. 2019, 9, 4053. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Kee, S.-H.; Han, D.; Tsai, Y.-T. Effects of air voids on ultrasonic wave propagation in early age cement pastes. Cem. Concr. Res. 2011, 41, 872–881. [Google Scholar] [CrossRef]
- Zou, Z.; Meegoda, J.N. A Validation of the Ultrasound Wave Velocity Method to Predict Porosity of Dry and Saturated Cement Paste. Adv. Civ. Eng. 2018, 2018, 3251206. [Google Scholar] [CrossRef] [Green Version]
- Stawiski, B.; Kania, T. Tests of Concrete Strength across the Thickness of Industrial Floor Using the Ultrasonic Method with Exponential Spot Heads. Materials 2020, 13, 2118. [Google Scholar] [CrossRef]
- Tworzewski, P.; Raczkiewicz, W.; Czapik, P.; Tworzewska, J. Diagnostics of Concrete and Steel in Elements of an Historic Reinforced Concrete Structure. Materials 2021, 14, 306. [Google Scholar] [CrossRef]
- Bacharz, K.; Raczkiewicz, W.; Bacharz, M.; Grzmil, W. Manufacturing Errors of Concrete Cover as a Reason of Reinforcement Corrosion in a Precast Element—Case Study. Coatings 2019, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Maj, M.; Ubysz, A.; Hammadeh, H.; Askifi, F. Non-Destructive Testing of Technical Conditions of RC Industrial Tall Chimneys Subjected to High Temperature. Materials 2019, 12, 2027. [Google Scholar] [CrossRef] [Green Version]
- Cristofaro, M.; Viti, S.; Tanganelli, M. New predictive models to evaluate concrete compressive strength using the SonReb method. J. Build. Eng. 2019, 27, 100962. [Google Scholar] [CrossRef]
- Golewski, G.L. Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method. Measurement 2019, 135, 96–105. [Google Scholar] [CrossRef]
- Golewski, G.L. Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method. Measurement 2021, 181, 109632. [Google Scholar] [CrossRef]
- Rui, L.; Zappa, E.; Collina, A. Vision-based measurement of crack generation and evolution during static testing of concrete sleepers. Eng. Fract. Mech. 2019, 224, 106715. [Google Scholar] [CrossRef]
- Meyer, D.; Combrinck, R. Utilising microCT scanning technology as a method for testing and analysing plastic shrinkage cracks in concrete. Constr. Build. Mater. 2021, 317, 125895. [Google Scholar] [CrossRef]
- Romero-Tarazona, B.; Rodriguez-Sandoval, C.; Villabonai-Ascanio, J.; Rincón-Quintero, A.D. Development of an artificial vision system that allows non-destructive testing on flat concrete slabs for surface crack detection by processing of digital images in MATLAB. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 12058. [Google Scholar] [CrossRef]
- Jang, S.Y.; Kim, B.S.; Oh, B.H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests. Cem. Concr. Res. 2011, 41, 9–19. [Google Scholar] [CrossRef]
- Wang, J. Steady-State Chloride Diffusion Coefficient and Chloride Migration Coefficient of Cracks in Concrete. J. Mater. Civ. Eng. 2017, 29, 04017117. [Google Scholar] [CrossRef]
- Sun, J.; Xie, J.; Zhou, Y.; Zhou, Y. A 3D three-phase meso-scale model for simulation of chloride diffusion in concrete based on ANSYS. Int. J. Mech. Sci. 2022, 219, 107127. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Rao, R.; Wang, C.; Fang, C. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos. Part B Eng. 2018, 164, 179–190. [Google Scholar] [CrossRef]
- Shaban, W.M.; Yang, J.; Su, H.; Liu, Q.-F.; Tsang, D.C.; Wang, L.; Xie, J.; Li, L. Properties of recycled concrete aggregates strengthened by different types of pozzolan slurry. Constr. Build. Mater. 2019, 216, 632–647. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, J.; Wang, J.; Huang, P.; Liu, J. Investigation of the high-temperature resistance of sludge ceramsite concrete with recycled fine aggregates and GGBS and its application in hollow blocks. J. Build. Eng. 2020, 34, 101954. [Google Scholar] [CrossRef]
- Xie, J.; Fang, C.; Lu, Z.; Li, Z.; Li, L. Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres. J. Clean. Prod. 2018, 197, 656–667. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E. Upcycling waste seashells with cement: Rheology and early-age properties of Portland cement paste. Resour. Conserv. Recycl. 2020, 155. [Google Scholar] [CrossRef]
- Hoła, J.; Bien, J.; Sadowski, L.; Schabowicz, K. Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 87–96. [Google Scholar] [CrossRef]
- Hoła, J.; Schabowicz, K. State-of-the-art non-destructive methods for diagnostic testing of building structures—Anticipated development trends. Arch. Civ. Mech. Eng. 2010, 10, 5–18. [Google Scholar] [CrossRef]
- Schabowicz, K. Non-Destructive Testing of Materials in Civil Engineering. Materials 2019, 12, 3237. [Google Scholar] [CrossRef] [Green Version]
- Garbacz, A.; Piotrowski, T.; Zalegowski, K.; Adamczewski, G. UIR-Scanner Potential to Defect Detection in Concrete. Adv. Mater. Res. 2013, 687, 359–365. [Google Scholar] [CrossRef]
- Dermawan, A.S.; Dewi, S.M.; Wisnumurti; Wibowo, A. Performance Evaluation and Crack Repair in Building Infrastructure. IOP Conf. Ser. Earth Environ. Sci. 2019, 328, 012007. [Google Scholar] [CrossRef]
- Todorovska, M.; Ivanović, S.; Trifunac, M. Wave propagation in a seven-story reinforced concrete building: I. Theoretical models. Soil Dyn. Earthq. Eng. 2001, 21, 211–223. [Google Scholar] [CrossRef]
- EN 1992-1-1:2004; Eurocode 2—Design of Concrete Structures. Part 1-1. General Rules and Rules for Buildings. PKN: Warsaw, Poland, 2004.
- Mackiewicz, M.; Krentowski, J.; Knyziak, P.; Wardach, M. Consequences of excessive deformation of structural elements in precast buildings. Eng. Fail. Anal. 2022, 137, 106261. [Google Scholar] [CrossRef]
- EN 13791:2019-12; Assessment of in-Situ Compressive Strength in Structures and Precast Concrete Components. PKN: Warsaw, Poland, 2019.
- Czarnecki, L.; Woyciechowski, P. Concrete Carbonation as a Limited Process and Its Relevance to Concrete Cover Thickness. ACI Mater. J. 2012, 109, 275–282. [Google Scholar]
- Czarnecki, L.; Woyciechowski, P.P. Modelling of concrete carbonation; is it a process unlimited in time and restricted in space? Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 43–54. [Google Scholar] [CrossRef]
- EN 14630; Products and Systems for the Protection and Repair of Concrete Structures—Test Methods—Determination of Carbonation Depth in Hardened Concrete by the Phenolphthalein Method. PKN: Warsaw, Poland, 2007.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardach, M.; Krentowski, J.R.; Knyziak, P. Degradation Analyses of Systemic Large-Panel Buildings Using Comparative Testing during Demolition. Materials 2022, 15, 3770. https://doi.org/10.3390/ma15113770
Wardach M, Krentowski JR, Knyziak P. Degradation Analyses of Systemic Large-Panel Buildings Using Comparative Testing during Demolition. Materials. 2022; 15(11):3770. https://doi.org/10.3390/ma15113770
Chicago/Turabian StyleWardach, Maciej, Janusz R. Krentowski, and Piotr Knyziak. 2022. "Degradation Analyses of Systemic Large-Panel Buildings Using Comparative Testing during Demolition" Materials 15, no. 11: 3770. https://doi.org/10.3390/ma15113770
APA StyleWardach, M., Krentowski, J. R., & Knyziak, P. (2022). Degradation Analyses of Systemic Large-Panel Buildings Using Comparative Testing during Demolition. Materials, 15(11), 3770. https://doi.org/10.3390/ma15113770