Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials
Abstract
1. Introduction
2. Experimental Techniques
2.1. Batch Calculation and Glass Preparation
2.2. Differential Thermal Analysis (DTA)
2.3. Heat Treatment
2.4. X-ray Diffraction (XRD)
2.5. Scanning Electron Microscope (SEM)
2.6. Thermal Expansion Measurement
3. Results and Discussion
3.1. Differential Thermal Analysis (DTA)
3.2. X-ray Diffraction (XRD)
3.2.1. XRD of the Investigated Samples after Treatment at Temperature 1000 °C for 2 h
3.2.2. XRD of the G60 after Treatment at a Temperature
3.3. Scanning Electron Microscope (SEM)
3.4. Theoretical Considerations of Thermal Expansion and Thermal Expansion Behavior of the Studied Samples
4. Conclusions
- The high-performance glass–ceramic materials were successfully obtained through a wollastonite–cordierite system based on industrial waste and natural raw materials.
- The present results showed that the by-pass cement dust could be used in quantities that may exceed 60% of the batch weight to produce glass–ceramic materials. This application may pave the way for the disposal of this waste in an environmentally friendly manner. By-pass cement and natural raw materials can be used successfully in preparing glass–ceramic materials without any chemical additives.
- These glass–ceramic materials have been used for different purposes, such as floor and wall tiles, benchtops, sewer pipes, and many others.
- Cleaning, environmental protection, and public health preservation by getting rid of by-pass cement dust through the preparation of glass–ceramic materials.
- It was found that β-wollastonitte is formed at low temperatures, and this helps to save energy and then turns into parawollastonite at higher temperatures. Accordingly, glass–ceramic materials containing β-wollastonite have a better economic value due to their formation at low temperatures.
- A fine-grained microstructure is obtained in the samples that are cordierite-rich.
- Increasing the time of heat-treatment at endothermic temperature helped form fine-grained microstructures.
- Obtaining glass–ceramic materials with low thermal expansion ranging from 6.216 to 2.618 × 10−6 (in the range of 20–700 ° C) decreased with an increasing percentage of cordierite.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awuchi, C.G.; Hannington, T.; Awuchi, C.G.; Igwe, V.S.; Amagwula, I.O. Industrial waste management, treatment, and health issues: Wastewater, solid, and electronic wastes. Eur. Acad. Res. 2020, 8, 1081–1119. [Google Scholar]
- Fagariba, C.J.; Song, S. Assessment of impediments and factors affecting waste management: A case of Accra Metropolis. Preprints 2016, 2016090012. [Google Scholar] [CrossRef][Green Version]
- El-Attar, M.M.; Sadek, D.M.; Salah, A.M. Recycling of high volumes of cement kiln dust in bricks industry. J. Clean. Prod. 2017, 143, 506–515. [Google Scholar] [CrossRef]
- Ali, A.A.M.; Negm, A.M.; Bady, M.F.; Ibrahim, M.G.; Suzuki, M. Environmental impact assessment of the Egyptian cement industry based on a life-cycle assessment approach: A comparative study between Egyptian and Swiss plants. Clean Technol. Environ. Policy 2016, 18, 1053–1068. [Google Scholar] [CrossRef]
- El-Sayed Seleman, M.M.; El-kheshen, A.A.; Kharbish, S.; Ebrahim, W.R. Utilization of Cement Kiln Dust for the Preparation of Borosilicate Glass. Intercom Int. Ceram. Rev. 2020, 69, 26–33. [Google Scholar] [CrossRef]
- Abid, K.N.; Yasse, R.S. Use of Bypass Cement Dust from Al-Kufa Cement Factory for Production of Glass Ceramic Material. Al Qadisiyah J. Eng. Sci. 2019, 12, 118–126. [Google Scholar] [CrossRef]
- Srivastava, L.; Paramkusam, B.; Prasad, A. Stabilisation of engine oil contaminated soil using cement kiln dust. In Proceedings of the Indian Geotechnical Conference, Delhi, India, 16–18 December 2010. [Google Scholar]
- Hamann, B.; Schulz, M.; Schneider, C. Use of alkaline process dusts from the cement industry in glass production processes. Veröffentlichung_DGG J. 2008. [Google Scholar]
- Pigaga, A.; Juškenas, R.; Virbalytė, D.; Klimantavičiūtė, M.G.; Pakštas, V. The use of cement kiln dust for the removal of heavy metal ions from aqueous solutions. Trans. IMF 2005, 83, 210–214. [Google Scholar] [CrossRef]
- Taha, R.; Al-Rawas, A.; Al-Harthy, A.; Al-Siyabi, H. Use of Cement by-Pass Dust in Soil Stabilization; Qatar University: Doha, Qatar, 2001. [Google Scholar]
- Khater, G.; Nabawy, B.S.; El-Kheshen, A.A.; Abdel-Baki, M.; Farag, M.M.; Abd Elsatar, A.G. Preparation and characterization of low-cost wollastonite and gehlenite ceramics based on industrial wastes. Constr. Build. Mater. 2021, 310, 125214. [Google Scholar] [CrossRef]
- Khater, G. Glass-ceramics in the CaO–MgO–Al2O3–SiO2 system based on industrial waste materials. J. Non Cryst. Solids 2010, 356, 3066–3070. [Google Scholar] [CrossRef]
- Khater, G. Use of by-pass cement dust for production of glass ceramic materials. Adv. Appl. Ceram. 2006, 105, 107–111. [Google Scholar] [CrossRef]
- Rawlings, R.; Wu, J.; Boccaccini, A. Glass-ceramics: Their production from wastes—A review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef]
- William, W.; Njenga, H. Industrial Chemistry. 2007. Available online: https://54.225.189.63/handle/123456789/40 (accessed on 22 March 2022).
- Karmakar, B. Functional Glasses and Glass-Ceramics: Processing, Properties and Applications; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Hayashi, S.; Sugai, M.; Nakagawa, Z.E.; Takei, T.; Kawasaki, K.; Katsuyama, T.; Yasumori, A.; Okada, K. Preparation of CaSiO3 whiskers from alkali halide fluxes. J. Eur. Ceram. Soc. 2000, 20, 1099–1103. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H. A low cost route for fabrication of wollastonite glass–ceramics directly using soda-lime waste glass by reactive crystallization–sintering. Ceram. Int. 2013, 39, 1943–1949. [Google Scholar] [CrossRef]
- Hodges, C.A. Mineral resources, environmental issues, and land use. Science 1995, 268, 1305–1312. [Google Scholar] [CrossRef]
- Boccaccini, A.R. Glass-ceramics from municipal incinerator fly ash. In Fuel and Energy Abstracts; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Chang, C.; Mao, D.; Wu, J. Characteristics of crystals precipitated in sintered apatite/wollastonite glass ceramics. Ceram. Int. 2000, 26, 779–785. [Google Scholar] [CrossRef]
- Costa Oliveira, F.; Franco, J.A.; Cruz Fernandes, J.; Dias, D. Newly developed cordierite–zircon composites. Br. Ceram. Trans. 2002, 101, 14–21. [Google Scholar] [CrossRef]
- Schneider, H.; Schreuer, J.; Hildmann, B. Structure and properties of mullite—A review. J. Eur. Ceram. Soc. 2008, 28, 329–344. [Google Scholar] [CrossRef]
- Nadafan, M.; Malekfar, R.; Dehghani, Z. Structural and optical properties of cordierite glass-ceramic doped in polyurethane matrix. AIP Adv. 2015, 5, 067135. [Google Scholar] [CrossRef]
- De Vekey, R.; Majumdar, A. Nucleation and crystallization studies of some glasses in the CaO-MgO-Al2O3-SiO2 system. Mineral. Mag. 1970, 37, 771–779. [Google Scholar] [CrossRef]
- El-Shennawi, A.W.A. The use of differential thermal analysis in the study of glass-ceramics. Ain Shams Sci. Bull. 1983, 24, 225–244. [Google Scholar]
- Edrees, S.J.; Shukur, M.M.; Obeid, M.M. First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Comput. Condens. Matter 2018, 14, 20–26. [Google Scholar] [CrossRef]
- Khater, G.A.; Nabawy, B.S.; El-Kheshen, A.A.; Abdel-Baki, M.; Farag, M.M. Utilizing of solid waste materials for producing porous and lightweight ceramics. Mater. Chem. Phys. 2022, 280, 125784. [Google Scholar] [CrossRef]
- Khater, G.A.; Nabawy, B.S.; El-Kheshen, A.A.; Abdel Latif, M.A.B.; Farag, M.M. Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials. Materials 2022, 15, 1112. [Google Scholar] [CrossRef]
- Qin, J.; Cui, C.; Cui, X.; Hussain, A.; Yang, C.; Yang, S. Recycling of lime mud and fly ash for fabrication of anorthite ceramic at low sintering temperature. Ceram. Int. 2015, 41, 5648–5655. [Google Scholar] [CrossRef]
- Leko, V.; Mazurin, O. Analysis of regularities in composition dependence of the viscosity for glass-forming oxide melts: II. Viscosity of ternary alkali aluminosilicate melts. Glass Phys. Chem. 2003, 29, 16–27. [Google Scholar] [CrossRef]
- Ho, C.Y.; Taylor, R.E. Thermal Expansion of Solids; ASM International: Almere, The Netherlands, 1998; Volume 4. [Google Scholar]
- Nave, R. Hyperphysics; Georgia State University: Atlanta, Georgia, 2002; Available online: http://hyperphysics.phy-astr.gsu.edu (accessed on 22 March 2022).
- Abo-Mosallam, H.A.; Darwish, H.; Salman, S.M. Crystallization characteristic and properties of some zinc containing soda lime silicate glasses. J. Mater. Sci. Mater. Electron. 2009, 21, 889–896. [Google Scholar] [CrossRef]
- Al-Harbi, O.A. Crystallisation and stability of glass-ceramics within the CaO–Li2O–SiO2 system that contain wollastonite. Glass Technol. Eur. J. Glass Sci. Technol. Part A 2007, 48, 35–40. [Google Scholar]
- Schairer, J.F.; Bowen, N.L. The binary system CaSiO 3-diopside, and the relations between CaSiO 3 and akermanite. Am. J. Science 1942, 240, 725–742. [Google Scholar] [CrossRef]
- Omar, A.A.; Salman, S.M.; Mahmoud, M. Phase relations in the diopside-anorthite-akermanite system. Ceram. Int. 1986, 12, 53–59. [Google Scholar] [CrossRef]
- Salman, S.M.; Darwish, H. Development of low cost glass-ceramic based on blast furnace slag and granite rock. Ceram. Silik. 2006, 50, 88. [Google Scholar]
- Bach, H.; Krause, D. Low Thermal Expansion Glass Ceramics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Strnad, Z. Glass—Ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses; Elsevier Science Publishers: Amsterdam, The Netherlands, 1986; Volume 268. [Google Scholar]
- Peng, F.; Liang, K.-M.; Hu, A.-M. Nano-crystal glass—Ceramics obtained from high alumina coal fly ash. Fuel 2005, 84, 341–346. [Google Scholar] [CrossRef]
- Valášková, M. Clays, clay minerals and cordierite ceramics-A review. Ceram. Silikáty 2015, 59, 331–340. [Google Scholar]
- Li, Y.; Wang, J.; Sun, L.; Wang, J. Mechanisms of ultralow and anisotropic thermal expansion in cordierite Mg2Al4Si5O18: Insight from phonon behaviors. J. Am. Ceram. Soc. 2018, 101, 4708–4718. [Google Scholar] [CrossRef]
- Rigby, G.; Green, A. The thermal expansion characteristics of some calcareous and magnesian minerals. Trans. Br. Ceram. Soc. 1942, 41, 123–143. [Google Scholar]
- Khater, G.; Yue, Y.; Abu Safiah, M.O.; Mahmoud, M.A. Synthesis and characterization of anorthite and magnetite glass-ceramics from basaltic rocks. Silicon 2019, 11, 1763–1774. [Google Scholar] [CrossRef]
- Tolliday, J. Crystal structure of β-wollastonite. Nature 1958, 182, 1012–1013. [Google Scholar] [CrossRef]
- Ohsato, H.; Sugimura, T. Morphology of synthetic β-wollastonite and para-wollastonite. J. Cryst. Growth 1986, 74, 656–658. [Google Scholar] [CrossRef]
Oxide wt % | Magnesite (Al-Nasr Mining Co.) | Silica Sand Abu-Zenima (Sinai) | Kaolin El-Tih (Sinai) | By-Pass Cement |
---|---|---|---|---|
SiO2 | 0.54 | 99.20 | 44.20 | 6.12 |
Al2O3 | 1.02 | 0.28 | 37.75 | 2.58 |
Fe2O3 | 0.48 | 0.03 | 0.93 | 3.37 |
TiO2 | trace | trace | 1.85 | 0.21 |
CaO | 6.31 | 0.10 | 0.82 | 55.96 |
MgO | 40.35 | trace | 0.52 | 0.84 |
Na2O | trace | trace | 1.15 | 0.29 |
K2O | trace | trace | 0.72 | 0.73 |
LOI at 1000 °C | 50.98 | 0.40 | 13.01 | 25.11 |
Glas No. | Nominal Phase * Composition (wt%) | Oxide wt% | Batch Ingredients (wt%) | ||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | By-Pass | Mag. | Kaolin | Sand | ||
G10 | 10%cord. + 90% wol. | 51.68 | 3.49 | 43.45 | 1.38 | 60.2 | 1.4 | 3.21 | 35.19 |
G20 | 20%cord. + 80% wol. | 51.65 | 6.97 | 38.62 | 2.76 | 53.19 | 4.15 | 11.11 | 31.54 |
G30 | 30%cord. + 70% wol. | 51.61 | 10.46 | 33.8 | 4.13 | 46.29 | 6.87 | 18.95 | 27.9 |
G40 | 40%cord. + 60% wol. | 51.57 | 13.95 | 28.97 | 5.51 | 39.43 | 9.57 | 26.68 | 24.31 |
G50 | 50%cord. + 50% wol. | 51.54 | 17.43 | 24.14 | 6.89 | 32.63 | 12.22 | 34.28 | 20.87 |
G60 | 60%cord. + 40% wol. | 51.54 | 20.92 | 19.31 | 8.27 | 25.98 | 14.87 | 41.89 | 17.26 |
G70 | 70%cord. + 30% wol. | 51.47 | 24.4 | 14.48 | 9.65 | 19.38 | 17.47 | 49.34 | 13.8 |
G80 | 80%cord. + 20% wol. | 51.43 | 27.89 | 9.66 | 11.02 | 12.84 | 20.29 | 56.35 | 10.53 |
Glass No. | Linear Expansion Coefficient (ἀ) × 10−6/°C | Phases Developed | ||
---|---|---|---|---|
50–300 °C | 50–500 °C | 50–700 °C | ||
G10 | 4.0838 | 5.9616 | 6.2161 | Β-woll. |
G20 | 2.7820 | 3.4909 | 5.2155 | Β-woll. |
G30 | 2.0008 | 3.0399 | 4.5930 | Diop. and parawoll. |
G40 | 1.9857 | 3.0385 | 4.5721 | Parawo. and Diop |
G50 | 1.3134 | 3.0764 | 4.5671 | An. and Diop |
G60 | 1.2896 | 2.7932 | 3.6538 | An. and Diop |
G70 | 1.2126 | 2.4522 | 3.3364 | An. and Diop |
G80 | 0.1478 | 2.2153 | 2.6181 | Cord. and An. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khater, G.A.; El-Kheshen, A.A.; Farag, M.M. Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials. Materials 2022, 15, 3534. https://doi.org/10.3390/ma15103534
Khater GA, El-Kheshen AA, Farag MM. Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials. Materials. 2022; 15(10):3534. https://doi.org/10.3390/ma15103534
Chicago/Turabian StyleKhater, Gamal A., Amany A. El-Kheshen, and Mohammad M. Farag. 2022. "Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials" Materials 15, no. 10: 3534. https://doi.org/10.3390/ma15103534
APA StyleKhater, G. A., El-Kheshen, A. A., & Farag, M. M. (2022). Synthesise and Characterization of Cordierite and Wollastonite Glass—Ceramics Derived from Industrial Wastes and Natural Raw Materials. Materials, 15(10), 3534. https://doi.org/10.3390/ma15103534