Humidity Effects on Domain Structure and Polarization Switching of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) Single Crystals
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kholkin, D.A.L.; Kalinin, D.S.V.; Roelofs, D.A.; Gruverman, P.A. Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy. In Scanning Probe Microscopy; Kalinin, S., Gruverman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 173–214. ISBN 978-0-387-28667-9. [Google Scholar]
- Kalinin, S.V.; Morozovska, A.N.; Chen, L.Q.; Rodriguez, B.J. Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 2010, 73, 056502. [Google Scholar] [CrossRef]
- Xu, Y. Introduction: Characteristics of ferroelectrics. In Ferroelectric Materials and their Applications; Elsevier: Amsterdam, The Netherlands, 1991; pp. 1–36. [Google Scholar]
- Li, T.; Zeng, K. Probing of Local Multifield Coupling Phenomena of Advanced Materials by Scanning Probe Microscopy Techniques. Adv. Mater. 2018, 30, e1803064. [Google Scholar] [CrossRef] [PubMed]
- Alexe, M.; Gruverman, A. Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-540-20662-0. [Google Scholar]
- Poggi, M.A.; Gadsby, A.E.D.; Bottomley, L.A.; King, W.P.; Oroudjev, E.; Hansma, H. Scanning Probe Microscopy. Anal. Chem. 2004, 76, 3429–3444. [Google Scholar] [CrossRef] [PubMed]
- Tikhomirov, O.; Labardi, M.; Allegrini, M. Scanning Probe Microscopy Applied to Ferroelectric Materials. 2D Nanoelectron. 2006, 217–259. [Google Scholar] [CrossRef]
- Balke, N.; Schenk, T.; Stolichnov, I.; Gruverman, A. Chapter 7.1—Piezoresponse Force Microscopy (PFM). In Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices; Schroeder, U., Hwang, C.S., Funakubo, H., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 291–316. ISBN 978-0-08-102430-0. [Google Scholar]
- Soergel, E. Piezoresponse force microscopy (PFM). J. Phys. D Appl. Phys. 2011, 44, 464003. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Kalinin, S.V.; Eliseev, E.A.; Svechnikov, S.V. Local Polarization Switching in Piezoresponse Force Microscopy. Ferroelectrics 2007, 354, 198–207. [Google Scholar] [CrossRef]
- Blaser, C.; Paruch, P. Subcritical switching dynamics and humidity effects in nanoscale studies of domain growth in ferroelectric thin films. N. J. Phys. 2015, 17, 13002. [Google Scholar] [CrossRef]
- Sun, X.; Su, Y.J.; Gao, K.W.; Guo, L.Q.; Qiao, L.J.; Chu, W.Y. The effect of humidity on nano-scaled domain switching in LiNbO3 single crystal. J. Appl. Phys. 2011, 110, 014103. [Google Scholar] [CrossRef]
- Dahan, D.; Molotskii, M.; Rosenman, G.; Rosenwaks, Y. Ferroelectric domain inversion: The role of humidity. Appl. Phys. Lett. 2006, 89, 152902. [Google Scholar] [CrossRef]
- Segura, J.J.; Domingo, N.; Fraxedas, J.; Verdaguer, A. Surface screening of written ferroelectric domains in ambient conditions. J. Appl. Phys. 2013, 113, 187213. [Google Scholar] [CrossRef]
- Park, K.-W.; Seo, H.; Kim, J.; Seol, D.; Hong, J.; Kim, Y. Humidity effect of domain wall roughening behavior in ferroelectric copolymer thin films. Nanotechnology 2014, 25, 355703. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Paszkiewicz, R.; Guiseppi-Elie, A. SbSI Nanosensors: From Gel to Single Nanowire Devices. Nanoscale Res. Lett. 2017, 12, 97. [Google Scholar] [CrossRef]
- Mistewicz, K.; Starczewska, A.; Jesionek, M.; Nowak, M.; Kozioł, M.; Stróż, D. Humidity dependent impedance characteristics of SbSeI nanowires. Appl. Surf. Sci. 2020, 513, 145859. [Google Scholar] [CrossRef]
- Mistewicz, K. Recent Advances in Ferroelectric Nanosensors: Toward Sensitive Detection of Gas, Mechanothermal Signals, and Radiation. J. Nanomater. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Li, N.; Zhao, M.H.; Garra, J.; Kolpak, A.M.; Rappe, A.M.; Bonnell, D.A.; Vohs, J.M. Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat. Mater. 2008, 7, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Bartošík, M.; Škoda, D.; Tomanec, O.; Kalousek, R.; Jánský, P.; Zlámal, J.; Spousta, J.; Dub, P.; Šikola, T. Role of humidity in local anodic oxidation: A study of water condensation and electric field distribution. Phys. Rev. B 2009, 79, 195406. [Google Scholar] [CrossRef]
- He, D.Y.; Qiao, L.J.; Khodayari, M.; Volinsky, A.A. Electric field and humidity effects on adsorbed water behavior on BaTiO3 ferroelectric domains studied by scanning probe microscopy. J. Appl. Phys. 2014, 116, 084105. [Google Scholar] [CrossRef]
- Ievlev, A.V.; Morozovska, A.N.; Shur, V.; Kalinin, S. Humidity effects on tip-induced polarization switching in lithium niobate. Appl. Phys. Lett. 2014, 104, 92908. [Google Scholar] [CrossRef]
- Shishkina, E.V.; Pelegova, E.V.; Kosobokov, M.S.; Akhmatkhanov, A.R.; Yudin, P.V.; Dejneka, A.; Shur, V.Y. Influence of Humidity on Local Polarization Reversal in a Rb:KTP Single Crystal. ACS Appl. Electron. Mater. 2021, 3, 260–266. [Google Scholar] [CrossRef]
- Lu, W.; Wong, L.-M.; Wang, S.; Zeng, K. Effects of oxygen and moisture on the I-V characteristics of TiO2 thin films. J. Mater. 2018, 4, 228–237. [Google Scholar] [CrossRef]
- He, D.Y.; Qiao, L.J.; Volinsky, A.A.; Bai, Y.; Wu, M.; Chu, W.Y. Humidity effects on (001) BaTiO3 single crystal surface water adsorption. Appl. Phys. Lett. 2011, 98, 062905. [Google Scholar] [CrossRef]
- Neumayer, S.M.; Strelcov, E.; Manzo, M.; Gallo, K.; Kravchenko, I.I.; Kholkin, A.L.; Kalinin, S.V.; Rodriguez, B.J. Thickness, humidity, and polarization dependent ferroelectric switching and conductivity in Mg doped lithium niobate. J. Appl. Phys. 2015, 118, 244103. [Google Scholar] [CrossRef]
- Shur, V.; Ievlev, A.V.; Nikolaeva, E.V.; Shishkin, E.I.; Neradovskiy, M.M. Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate. J. Appl. Phys. 2011, 110, 052017. [Google Scholar] [CrossRef]
- Weeks, B.L.; Vaughn, M.W.; DeYoreo, J.J. Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy. Langmuir 2005, 21, 8096–8098. [Google Scholar] [CrossRef] [PubMed]
- Ohara, K.; Cho, Y. Effect of the surface adsorbed water on the studying of ferroelectrics by scanning nonlinear dielectric microscopy. J. Appl. Phys. 2004, 96, 7460–7463. [Google Scholar] [CrossRef]
- Brugère, A.; Gidon, S.; Gautier, B. Finite element method simulation of the domain growth kinetics in single-crystal LiTaO3: Role of surface conductivity. J. Appl. Phys. 2011, 110, 052016. [Google Scholar] [CrossRef]
- Lim, L.; Rajan, K. High-homogeneity High-performance flux-grown Pb(Zn1/3Nb2/3)O3–(6–7)%PbTiO3 single crystals. J. Cryst. Growth 2004, 271, 435–444. [Google Scholar] [CrossRef]
- Yang, Z.; Zu, J. Comparison of PZN-PT, PMN-PT Single Crystals and PZT Ceramic for Vibration Energy Harvesting. Energy Convers. Manag. 2016, 122, 321–329. [Google Scholar] [CrossRef]
- Jesse, S.; Lee, H.N.; Kalinin, S.V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 2006, 77, 73702. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, H.; Chu, R.; Li, G.; Luo, H.; Yin, Q. Domain orientation imaging of PMN–PT single crystals by vertical and lateral piezoresponse force microscopy. J. Cryst. Growth 2004, 267, 194–198. [Google Scholar] [CrossRef]
- Gautier, B.; Brugère, A.; Gidon, S. Impact of the ambient humidity on the kinetics of formation of ferroelectric domains in monocrystalline LiTaO3. Int. J. Nanosci. 2012, 11, 1240013. [Google Scholar] [CrossRef]
- Scovell, D.L.; Pinkerton, T.D.; Finlayson, B.A.; Stuve, E.M. The dielectric response of water in high electric fields: Equilibrium water thickness and the field distribution. Chem. Phys. Lett. 1998, 294, 255–261. [Google Scholar] [CrossRef]
- Jesse, S.; Baddorf, A.P.; Kalinin, S.V. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 2006, 88, 062908. [Google Scholar] [CrossRef]
- Tagantsev, A.K.; Gerra, G. Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 2006, 100, 051607. [Google Scholar] [CrossRef]
- Okatan, M.B.; Alpay, S.P. Imprint in ferroelectric materials due to space charges: A theoretical analysis. Appl. Phys. Lett. 2009, 95, 092902. [Google Scholar] [CrossRef]
- Lazareva, I.; Koval, Y.; Müller, P.; Müller, K.; Henkel, K.; Schmeisser, D. Interface screening and imprint in poly(vinylidene fluoride/trifluoroethylene) ferroelectric field effect transistors. J. Appl. Phys. 2009, 105, 054110. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zeng, K. Humidity Effects on Domain Structure and Polarization Switching of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) Single Crystals. Materials 2021, 14, 2447. https://doi.org/10.3390/ma14092447
Wang H, Zeng K. Humidity Effects on Domain Structure and Polarization Switching of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) Single Crystals. Materials. 2021; 14(9):2447. https://doi.org/10.3390/ma14092447
Chicago/Turabian StyleWang, Hongli, and Kaiyang Zeng. 2021. "Humidity Effects on Domain Structure and Polarization Switching of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) Single Crystals" Materials 14, no. 9: 2447. https://doi.org/10.3390/ma14092447
APA StyleWang, H., & Zeng, K. (2021). Humidity Effects on Domain Structure and Polarization Switching of Pb(Zn1/3Nb2/3)O3-x%PbTiO3 (PZN-x%PT) Single Crystals. Materials, 14(9), 2447. https://doi.org/10.3390/ma14092447