Nonequilibrium Temperature: An Approach from Irreversibility
Abstract
:1. Introduction
- The probabilistic interpretation of physical quantities;
- The link between the macroscopic and the microscopic worlds.
- the zeroth law of thermodynamics, in order to introduce the empirical temperature;
- the second law of thermodynamics, in order to quantitatively define the meaning of hot and cold via the introduction of the concept of absolute temperature and the direction of heat flow.
2. Materials and Methods
- One part is composed of the usual classical interaction with the environment, with a heat capacity and the usual equilibrium temperature .
- Another part is composed by a continuous energy fluctuation, with the heat capacity and the effective temperature .
3. Results
4. Discussion and Conclusions
- The electromagnetic outflow, generated by irreversibility during microscopic interaction in the system, as a consequence of the Carnot approach to systems and the Gouy–Stodola theorem;
- The environmental temperature;
- The mean energy of the system;
- The relaxation time and the geometrical and physical characteristics of the system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Fermi, E. Thermodynamics; Dover Publications: Mineola, NY, USA, 1956. [Google Scholar]
- Chandel, V.S.; Wang, G.; Talha, M. Advances in modelling and analysis of nanostructures: A review. Nanotechnol. Rev. 2020, 9, 230–258. [Google Scholar] [CrossRef]
- Puglisi, A.; Sarracino, A.; Vulpiani, A. Temperature in and out of equilibrium: A review of concepts, tools and attempts. Phys. Rep. 2017, 709–710, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Müller, I. A History of Thermodynamics; Springer: Berlin, Germany, 2007. [Google Scholar]
- Chang, H. Inventing Temperature; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Loyson, P. Galilean thermometer not so galilean. J. Chem. Educ. 2012, 89, 1095. [Google Scholar] [CrossRef]
- Pauli, W. Thermodynamics and the Kinetic Theory of Gasses; Dover Publications: Mineola, NY, USA, 2000. [Google Scholar]
- Carnot, S. Rèflexion sur la Puissance Motrice du feu sur le Machine a Dàvelopper Cette Puissance; Bachelier Libraire: Paris, France, 1824. [Google Scholar]
- Schrödinger, E. Statistical Thermodynamics; Dover Publications: Mineola, NY, USA, 1989. [Google Scholar]
- Pauli, W. Statistical Mechanics; Dover Publications: Mineola, NY, USA, 2013. [Google Scholar]
- Clausius, R. Mechanical Theory of Heat—With Its Applications to the Steam Engine and to Physical Properties of Bodies; John van Voorst: London, UK, 1965. [Google Scholar]
- Cohen, E.G.D. Boltzmann and Statistical Mechanics. In Boltzmann’s Legacy 150 Years after His Birth; Accademia Nazionale dei Lincei: Roma, Italy, 1997. [Google Scholar]
- Lavenda, B.H. Thermodynamics of Irreversible Processes; Dover: Mineola, NY, USA, 1993. [Google Scholar]
- Einstein, A. Zur allgemeinen molekularen Theorie der Wärme. Ann. Phys. 1904, 319, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Mishin, Y. Thermodynamic theory of equilibrium fluctuations. Ann. Phys. 2015, 363, 48–97. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.L. An Introduction to Statistical Thermodynamics; Dover Publications: Mineola, NY, USA, 1987. [Google Scholar]
- Uffink, J.; van Lith, J. Thermodynamic uncertainty relations. Found. Phys. 1999, 29, 655–692. [Google Scholar] [CrossRef]
- McFee, R. On fluctuations of temperature in small systems. Am. J. Phys. 1973, 41, 230. [Google Scholar] [CrossRef]
- Kratky, K.W. Fluctuation of thermodynamic parameters in different ensembles. Phys. Rev. A 1985, 31, 945. [Google Scholar] [CrossRef]
- Chui, T.C.P.; Swanson, D.R.; Adriaans, M.J.; Nissen, J.A.; Lipa, J.A. Temperature fluctuations in the canonical ensemble. Phys. Rev. Lett. 1992, 69, 3005. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Temperature fluctuations: A well-defined and unavoidable notion. Phys. Today 1989, 42, 71. [Google Scholar] [CrossRef]
- Evans, D.J.; Cohen, E.G.D.; Morriss, G.P. Probability of second law violations in shearing steady states. Phys. Rev. Lett. 1993, 71, 2401. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.J.; Searles, D.J. Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 1994, 50, 1645. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales. Phys. Rev. Lett. 2002, 89, 050601. [Google Scholar] [CrossRef] [Green Version]
- Marconi, U.M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A. Fluctuation-Dissipation: Response Theory in Statistical Physics. Phys. Rep. 2008, 461, 111–195. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A. Advanced Engineering Thermodynamics; Wiley & Sons: New York, NY, USA, 2006. [Google Scholar]
- Kurchan, J. Fluctuation theorem for stochastic dynamics. J. Phys. A Math. Gen. 1998, 31, 3719. [Google Scholar] [CrossRef] [Green Version]
- Crooks, G.E. Path ensemble averages in systems driven far from equilibrium. Phys. Rev. E 2000, 61, 2361. [Google Scholar] [CrossRef] [Green Version]
- Gallavotti, G.; Cohen, E.G.D. Dynamical Ensembles in Nonequilibrium Statistical Mechanics. Phys. Rev. Lett. 1995, 74, 2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciliberto, S.; Laroche, C. An experimental test of the Gallavotti-Cohen fluctuation theorem. J. Phys. IV Fr. 1998, 8, 215–219. [Google Scholar] [CrossRef]
- Carnot, L. Principes Fondamentaux de L’équilibre et du Movement (Fundamental Principles of Equilibrium and Movement); Deterville: Paris, France, 1803. [Google Scholar]
- Keenan, J. A Steam chart for second law analysis. Mech. Eng. 1932, 54, 195–204. [Google Scholar]
- Bošnjaković, F. Kampf den Nichtumkehrbarkeiten (Fight against irreversibility). Arch. Wärmewirtsch. Dampfkesselwes. 1938, 19, 1–2. (In German) [Google Scholar]
- Prigogine, I. Modération et transformations irréversibles des systèmes ouverts. Bull. Cl. Sci. Acad. R. Belg. 1945, 31, 600–606. [Google Scholar]
- Keenan, J.H. Thermodynamics; Wiley: New York, NY, USA, 1941. [Google Scholar]
- Prigogine, I. Étude thermodynamique des Phenomènes Irréversibles; Desoer: Liège, Belgium, 1947. [Google Scholar]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Thomas: Springfields, UK, 1955. [Google Scholar]
- Denbigh, K.G. The second-law efficiency of chemical processes. Chem. Eng. Sci. 1956, 6, 1–9. [Google Scholar] [CrossRef]
- Denbigh, K.G. The Many Faces of Irreversibility. Br. J. Philos. Sci. 1989, 40, 501–518. [Google Scholar] [CrossRef]
- Gyarmati, I. Non-Equilibrium Thermodynamics. Field Theory and Variational Principles; Springer: Berlin, Germany, 1970. [Google Scholar]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 44, 22–24. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Wu, C.; Chen, L.; Chen, J. (Eds.) Recent Advances in Finite Time Thermodynamics; Nova Science Publishers: New York, NY, USA, 1999. [Google Scholar]
- Berry, R.S.; Kazakov, V.; Sieniutycz, S.; Szwast, Z.; Tsirlin, A.M. Thermodynamic Optimization of Finite-Time Processes; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Lucia, U. Entropy production and generation: Clarity from nanosystems considerations. Chem. Phys. Lett. 2015, 629, 87–90. [Google Scholar] [CrossRef]
- Lucia, U. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems. Sci. Rep. 2016, 6, 35792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katchalsky, A.; Curran, P. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Demirel, Y.; Gerbaud, V. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Picard, E. Annonce la mort de M. Georges Gouy. Comptes Rendus Séances l’Acad. Sci. 1926, 182, 293–295. [Google Scholar]
- Martin, J.; Klein, A.J.; Kox, R.S. (Eds.) The Collected Papers of Albert Einstein, Volume 5: The Swiss Years: Correspondence, 1902–1914; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Lang, N. Aurel Stodolaand His Influence on the ETH and on Mechanical Engineering; Department of Mechanical and Process Engineering, ETH: Zurich, Switzerland, 2014. [Google Scholar]
- Gouy, G. Sur les transformation et l’équilibre en Thermodynamique. Comptes Rendus l’Acad. Sci. Paris 1889, 108, 507–509. (In French) [Google Scholar]
- Gouy, G. Sur l’énergie utilizable. J. Phys. 1889, 8, 501–518. (In French) [Google Scholar]
- Duhem, P. Sur les transformations et l’équilibre en Thermodynamique. Note de M.P. Duhem. Comptes Rendus l’Acad. Sci. Paris 1889, 108, 666–667. (In French) [Google Scholar]
- Gouy, G. Sur l’énergie utilisable et le potentiel thermodynamique. Note de M. Gouy. Comptes Rendus l’Acad. Sci. Paris 1889, 108, 794. (In French) [Google Scholar]
- Stodola, A. Steam Turbine; Loewenstein, L.C., Translator; Van Nostrand: New York, NY, USA, 1905. [Google Scholar]
- Gujrati, P.D. Generalized Non-equilibrium Heat and Work and the Fate of the Clausius Inequality. arXiv 2011, arXiv:1105.5549v1. [Google Scholar]
- Gujrati, P.D. First-principles nonequilibrium deterministic equation of motion of a Brownian particle and microscopic viscous drag. Phys. Rev. E 2020, 102, 012140. [Google Scholar] [CrossRef] [PubMed]
- Mohammady, M.H.; Auffèves, A.; Anders, J. Energetic footprints of irreversibility in the quantum regime. Commun. Phys. 2020, 3, 89. [Google Scholar] [CrossRef]
- Casas-Vázquez, J.; Jou, D. Temperature in non-equilibrium states: A review of open problems and current proposals. Rep. Prog. Phys. 2003, 66, 1937–2023. [Google Scholar] [CrossRef]
- Bridgman, P.W. The Nature of Thermodynamics; Harper: New York, NY, USA, 1961. [Google Scholar]
- de Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Haase, R. Thermodynamics of Irreversible Processes; Addison-Wesley: Reading, UK, 1969. [Google Scholar]
- Eu, B.C. Kinetic Theory and Irreversible Thermodynamics; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Maugin, G.A. The Thermomechanics of Nonlinear Irreversible Behaviors. An Introduction; World Scientific: Singapore, 1999. [Google Scholar]
- Keizer, J. Statistical Thermodynamics of Nonequilibrium Processes; Springer: Berlin, Germany, 1987. [Google Scholar]
- Silhavy, M. The Mechanics and Thermodynamics of Continuous Media; Springer: Berlin, Germany, 1997. [Google Scholar]
- Truesdell, C. Rational Thermodynamics; Springer: Berlin, Germany, 1984. [Google Scholar]
- Yadati, Y.; Mears, N.; Chatterjee, A. Spatio-temporal characterization of thermal fluctuations in a non-turbulent Rayleigh –Bénard convection at steady state. Phys. A Stat. Mech. Its Appl. 2020, 547, 123867. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Iannacchione, G. Time and thermodynamics extended discussion on “Time & clocks: A thermodynamic approach”. Results Phys. 2020, 17, 103165. [Google Scholar] [CrossRef]
- Chatterjee, A.; Yadati, Y.; Mears, N.; Iannacchione, G. Coexisting Ordered States, Local Equilibrium-like Domains, and Broken Ergodicity in a Non-turbulent Rayleigh-Bénard Convection at Steady-state. Sci. Rep. 2019, 9, 10615. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mears, N.; Yadati, Y.; Iannacchione, G. An overview of emergent order in far-from-equilibrium driven systems: From kuramoto oscillators to rayleigh–bénard convection. Entropy 2020, 22, 561. [Google Scholar] [CrossRef]
- Chatterjee, A. Thermodynamics of action and organization in a system. Complexity 2016, 22, 307–317. [Google Scholar] [CrossRef]
- Vilar, J.M.G.; Rubı, J.M. Thermodynamics “beyond” local equilibrium. Proc. Natl. Acad. Sci. USA 2001, 98, 11081–11084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öttinger, H. Beyond Equilibrium Thermodynamics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Beris, A.N.; Edwards, B.J. The Thermodynamics of Flowing Systems; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Maugin, G.A. Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 1990, 15, 173–192. [Google Scholar] [CrossRef]
- Grmela, M.; Restuccia, L. Non-equilibrium temperature in the multiscale dynamics and thermodynamics. Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Nat. 2019, 97, 8. [Google Scholar] [CrossRef]
- Grmela, M. Multiscale Thermodynamics. Entropy 2021, 23, 165. [Google Scholar] [CrossRef] [PubMed]
- Thomas Aquinatis, S. Summa Theologiae (1274). In Sancti Thomae Aquinatis Opera omnia iussu; Leonis, P.M., XIII, Ed.; Ex Typographia Polyglotta S. C. De Propaganda Fide: Roma, Italy, 1891–1892. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Willey and Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Garden, J.L.; Richard, J.; Guillou, H. Temperature of systems out of thermodynamic equilibrium. J. Chem. Phys. 2008, 129, 044508. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, C.; Liphardt, J.; Ritort, F. The Nonequilibrium Thermodynamics of Small Systems. Phys. Today 2005, 58, 43. [Google Scholar] [CrossRef] [Green Version]
- Tool, A.Q. Relaxation of stresses in Annealing Glass. J. Res. Bur. Stand. 1945, 34, 199–211. [Google Scholar] [CrossRef]
- Tool, A.Q. Relaxation between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 1946, 29, 240–253. [Google Scholar] [CrossRef]
- Yue, Y. Fictive temperature, cooling rate, and viscosity of glasses. J. Chem. Phys. 2004, 120, 8053. [Google Scholar] [CrossRef]
- Nieuwenhuizen, T.M. Thermodynamics of the Glassy State: Effective Temperature as an Additional System Parameter. Phys. Rev. Lett. 1998, 80, 5580. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, T.M. Ehrenfest Relations at the Glass Transition: Solution to an Old Paradox. Phys. Rev. Lett. 1997, 79, 1317. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.; Leighton, R.B.; Sans, M. The Feynman Lectures on Physics; Addison Wesley: Boston, MA, USA, 1964; Volume II. [Google Scholar]
- Alonso, M.; Finn, E.J. Quantum and Statistical Physics; Addison Wesley: Reading, UK, 1968. [Google Scholar]
- Lucia, U. Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature. Physica A 2016, 444, 121–128. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Kuzemsky, A.L. Time, Irreversibility and Entropy Production in Nonequilibrium Systems. Entropy 2020, 22, 887. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.; Sbitnev, V.; Yoon, S. A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IV: From Bernoulli shift to 1/f spectrum. Int. J. Bifurc. Chaos 2005, 15, 1045–1183. [Google Scholar] [CrossRef]
- Casas-Vázquez, J.; Jou, D. Extended irreversible thermodynamics and non-equilibrium temperature. Atti dell’Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Nat. 2008, 86, SP1–SP12. [Google Scholar] [CrossRef]
- Casas-Vázquez, J.; Jou, D. Nonequilibrium temperature vs local-equilibrium temperature. Phys. Rev. E 1994, 49, 1040–1049. [Google Scholar] [CrossRef]
- Das, M.; Das, D.; Ray, D. Landauer’s blowtoch effect as a thermodynamic cross process: Brownian cooling. Phys. Rev. E 2015, 92, 052102. [Google Scholar] [CrossRef]
- Lucia, U. The Gouy-Stodola theorem as a variational principle for open systems. Atti dell’Accad. Peloritana Pericolanti Messina 2016, 94, A4. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. Nonequilibrium Temperature: An Approach from Irreversibility. Materials 2021, 14, 2004. https://doi.org/10.3390/ma14082004
Lucia U, Grisolia G. Nonequilibrium Temperature: An Approach from Irreversibility. Materials. 2021; 14(8):2004. https://doi.org/10.3390/ma14082004
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2021. "Nonequilibrium Temperature: An Approach from Irreversibility" Materials 14, no. 8: 2004. https://doi.org/10.3390/ma14082004
APA StyleLucia, U., & Grisolia, G. (2021). Nonequilibrium Temperature: An Approach from Irreversibility. Materials, 14(8), 2004. https://doi.org/10.3390/ma14082004