Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassett, C.A.L. Electrical effects in bone. Sci. Am. 1965, 213, 18–25. [Google Scholar] [CrossRef]
- Fukada, E.; Yasuda, I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 1957, 12, 1158–1162. [Google Scholar] [CrossRef]
- Rajabi, A.H.; Jaffe, M.; Arinzeh, T.L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 2015, 24, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khare, D.; Basu, B.; Dubey, A.K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020, 258, 120280. [Google Scholar]
- Chen, W.P.; Chan, H.L.W.; Yiu, F.C.H.; Ng, K.M.W.; Liu, P.C.K. Water-induced degradation in lead zirconate titanate piezoelectric ceramics. Appl. Phys. Lett. 2002, 80, 3587–3589. [Google Scholar] [CrossRef] [Green Version]
- Baxter, F.R.; Bowen, C.R.; Turner, I.G.; Dent, A.C.E. Electrically active bioceramics: A review of interfacial responses. Ann. Biomed. Eng. 2010, 38, 2079–2092. [Google Scholar] [CrossRef]
- Webster, T.J.; Ergun, C.; Doremus, R.H.; Lanford, W.A. Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2003, 67, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, N.; Sato, K.; Saito, K.; Asami, K.; Hanawa, T. Calcium phosphates formation on CaTiO3 coated titanium. J. Mater. Sci. Mater. Med. 2007, 18, 1009–1016. [Google Scholar] [CrossRef]
- Hamada, K.; Kon, M.; Hanawa, T.; Yokoyama, K.; Miyamoto, Y.; Asaoka, K. Hydrothermal modification of titanium surface in calcium solutions. Biomaterials 2002, 23, 2265–2272. [Google Scholar] [CrossRef]
- Riaz, A.; Witte, K.; Bodnar, W.; Hantusch, M.; Schell, N.; Springer, A.; Burkel, E. Structural changes and pseudo-piezoelectric behaviour of field assisted sintered calcium titanate. Materialia 2021, 15, 100998. [Google Scholar] [CrossRef]
- Wang, X.; Song, C.; Li, D.; Geng, K.; Zeng, F.; Pan, F. The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film. Appl. Surf. Sci. 2006, 253, 1639–1643. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Padmanabhan, V.P.; Kulandaivelu, R.; Nellaiappan, T.S.N.; Sagadevan, S.; Paiman, S.; Mohammad, F.; Al-Lohedan, H.A.; Obulapuram, P.K.; Oh, W.C. Influence of iron doping towards the physicochemical and biological characteristics of hydroxyapatite. Ceram. Int. 2021, 47, 5061–5070. [Google Scholar] [CrossRef]
- Prabhu, M.; Kavitha, K.; Manivasakan, P.; Rajendran, V.; Kulandaivelu, P. Synthesis, characterization and biological response of magnesium-substituted nanobioactive glass particles for biomedical applications. Ceram. Int. 2013, 39, 1683–1694. [Google Scholar] [CrossRef]
- Chandra, U. Recent Applications in Sol-Gel Synthesis; BoD–Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Schell, N.; King, A.; Beckmann, F.; Ruhnau, H.U.; Kirchhof, R.; Kiehn, R.; Müller, M.; Schreyer, A. The high energy materials science beamline (HEMS) at PETRA III. AIP Conf. Proc. 2010. [Google Scholar] [CrossRef]
- Schell, N.; King, A.; Beckmann, F.; Fischer, T.; Müller, M.; Schreyer, A. The high energy materials science beamline (HEMS) at PETRA III. Mater. Sci. Forum 2014, 772, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.R.; Schultz, A.S.; Richardson, J.W., Jr. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Lutterotti, L.; Bortolotti, M.; Ischia, G.; Lonardelli, I.; Wenk, H.R. Rietveld texture analysis from diffraction images. Z. Kristallogr. Suppl. 2007, 26, 125–130. [Google Scholar] [CrossRef]
- Oliveira, L.H.; Savioli, J.; De Moura, A.P.; Nogueira, I.C.; Li, M.S.; Longo, E.; Varela, J.A.; Rosa, I.L. Investigation of structural and optical properties of CaTiO3 powders doped with Mg2+ and Eu3+ ions. J. Alloys Compd. 2015, 647, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Riaz, A.; Witte, K.; Bodnar, W.; Burkel, E. Pseudo-piezoelectricity in calcium titanate–towards novel implant materials. Scr. Mater. 2020, 188, 274–278. [Google Scholar] [CrossRef]
- Kour, P.; Pradhan, S.; Kumar, P.; Sinha, S.; Kar, M. Study of Ferroelectric and Piezoelectric Properties on Ca Doped PZT Ceramics. Mater. Today Proc. 2017, 4, 5727–5733. [Google Scholar] [CrossRef]
CaTiO3 | Composition (at.%) | |||||
---|---|---|---|---|---|---|
O | Ca | Ti | Mg | Fe | C | |
Pure | 57 ± 5 | 16 ± 1 | 19 ± 1 | – | – | 8 ± 1 |
Mg doped | 57 ± 5 | 15 ± 1 | 18 ± 1 | 2 ± 0 | – | 8 ± 1 |
Fe doped | 56 ± 5 | 14 ± 1 | 17 ± 1 | – | 2 ± 0 | 10 ± 1 |
CaTiO3 | CS (nm) | Phases (wt.%) | Q (pC) | ||||
---|---|---|---|---|---|---|---|
CaTiO3 | CaTiO3 | α-TiO2 | Fe2TiO5 | MgTiO3 | MgTi2O5 | ||
Pure | 219 ± 7 | 94.8 ± 0.5 | 5.1 ± 0.3 | – | – | – | 2.1 ± 0.3 |
Mg doped | 175 ± 8 | 86.2 ± 0.2 | 4.7 ± 0.4 | – | 4.8 ± 0.3 | 4.2 ± 0.2 | 2.9 ± 0.1 |
Fe doped | 163 ± 4 | 89.3 ± 0.4 | 5.2 ± 0.1 | 5.4 ± 0.2 | – | – | 3.6 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, A.; Witte, K.; Bodnar, W.; Seitz, H.; Schell, N.; Springer, A.; Burkel, E. Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering. Materials 2021, 14, 1495. https://doi.org/10.3390/ma14061495
Riaz A, Witte K, Bodnar W, Seitz H, Schell N, Springer A, Burkel E. Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering. Materials. 2021; 14(6):1495. https://doi.org/10.3390/ma14061495
Chicago/Turabian StyleRiaz, Abdullah, Kerstin Witte, Wiktor Bodnar, Hermann Seitz, Norbert Schell, Armin Springer, and Eberhard Burkel. 2021. "Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering" Materials 14, no. 6: 1495. https://doi.org/10.3390/ma14061495
APA StyleRiaz, A., Witte, K., Bodnar, W., Seitz, H., Schell, N., Springer, A., & Burkel, E. (2021). Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering. Materials, 14(6), 1495. https://doi.org/10.3390/ma14061495