Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond
Abstract
1. Introduction
2. Sample Preparation
3. Experiment
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, L.; Simpson, D.; Hollenberg, L. Nanoscale sensing and imaging in biology using the nitrogen-vacancy center in diamond. MRS Bull. 2013, 38, 162–167. [Google Scholar] [CrossRef]
- Kumar, R.; Pandit, P.; Pal, P.; Dhakate, S.R.; Pant, R.P.; Kumar, R.; Avasthi, D.K.; Singh, D.K. Engineering bright fluorescent nitrogen-vacancy (NV) nano-diamonds: Role of low-energy ion-irradiation parameters. AIP Adv. 2018, 8, 085023. [Google Scholar] [CrossRef]
- Unden, T.; Balasubramanian, P.; Louzon, D.; Vinkler, Y.; Plenio, M.B.; Markham, M.; Twitchen, D.; Stacey, A.; Lovchinsky, I.; Sushkov, A.O.; et al. Quantum Metrology Enhanced by Repetitive Quantum Error Correction. Phys. Rev. Lett. 2016, 116, 230502. [Google Scholar] [CrossRef]
- Rembold, P.; Oshnik, N.; Müller, M.M.; Montangero, S.; Calarco, T.; Neu, E. Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond. AVS Quantum Sci. 2020, 2, 024701. [Google Scholar] [CrossRef]
- Acosta, V.M.; Bauch, E.; Ledbetter, M.P.; Santori, C.; Fu, K.M.C.; Barclay, P.E.; Beausoleil, R.G.; Linget, H.; Roch, J.F.; Treussart, F.; et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 2009, 80, 115202. [Google Scholar] [CrossRef]
- Taylor, J.M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.; Hemmer, P.R.; Yacoby, A.; Walsworth, R.; Lukin, M.D. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 2008. [Google Scholar] [CrossRef]
- Kucsko, G.; Choi, S.; Choi, J.; Maurer, P.C.; Zhou, H.; Landig, R.; Sumiya, H.; Onoda, S.; Isoya, J.; Jelezko, F.; et al. Critical Thermalization of a Disordered Dipolar Spin System in Diamond. Phys. Rev. Lett. 2018, 121, 023601. [Google Scholar] [CrossRef] [PubMed]
- Kehayias, P.; Mrózek, M.; Acosta, V.M.; Jarmola, A.; Rudnicki, D.S.; Folman, R.; Gawlik, W.; Budker, D. Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond. Phys. Rev. B 2014, 89, 245202. [Google Scholar] [CrossRef]
- Page, M.R.; McCullian, B.A.; Purser, C.M.; Schulze, J.G.; Nakatani, T.M.; Wolfe, C.S.; Childress, J.R.; McConney, M.E.; Howe, B.M.; Hammel, P.C.; et al. Optically detected ferromagnetic resonance in diverse ferromagnets via nitrogen vacancy centers in diamond. J. Appl. Phys. 2019, 126, 124902. [Google Scholar] [CrossRef]
- Acosta, V.M.; Bauch, E.; Jarmola, A.; Zipp, L.J.; Ledbetter, M.P.; Budker, D. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond. Appl. Phys. Lett. 2010, 97, 174104. [Google Scholar] [CrossRef]
- Ladd, T.D.; Jelezko, F.; Laflamme, R.; Nakamura, Y.; Monroe, C.; O’Brien, J.L. Quantum Comput. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Mrózek, M.; Rudnicki, D.; Kehayias, P.; Jarmola, A.; Budker, D.; Gawlik, W. Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. EPJ Quantum Technol. 2015, 2, 22. [Google Scholar] [CrossRef]
- Pham, L.M.; Le Sage, D.; Stanwix, P.L.; Yeung, T.K.; Glenn, D.; Trifonov, A.; Cappellaro, P.; Hemmer, P.R.; Lukin, M.D.; Park, H.; et al. Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 2011, 13, 045021. [Google Scholar] [CrossRef]
- Chipaux, M.; Tallaire, A.; Achard, J.; Pezzagna, S.; Meijer, J.; Jacques, V.; Roch, J.F.; Debuisschert, T. Magnetic imaging with an ensemble of nitrogen-vacancy centers in diamond. Eur. Phys. J. D 2015, 69, 166. [Google Scholar] [CrossRef]
- Le Sage, D.; Arai, K.; Glenn, D.R.; DeVience, S.J.; Pham, L.M.; Rahn-Lee, L.; Lukin, M.D.; Yacoby, A.; Komeili, A.; Walsworth, R.L. Optical magnetic imaging of living cells. Nature 2013, 496, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.A.; Tetienne, J.P.; McCoey, J.M.; Ganesan, K.; Hall, L.T.; Petrou, S.; Scholten, R.E.; Hollenberg, L.C.L. Magneto-optical imaging of thin magnetic films using spins in diamond. Sci. Rep. 2016, 6, 22797. [Google Scholar] [CrossRef] [PubMed]
- Smits, J.; Berzins, A.; Gahbauer, F.H.; Ferber, R.; Erglis, K.; Cebers, A.; Prikulis, J. Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in diamond. Eur. Phys. J. Appl. Phys. 2016, 73, 20701. [Google Scholar] [CrossRef]
- Nowodzinski, A.; Chipaux, M.; Toraille, L.; Jacques, V.; Roch, J.F.; Debuisschert, T. Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits. Microelectron. Reliab. 2015, 55, 1549–1553. [Google Scholar] [CrossRef]
- Tetienne, J.P.; Dontschuk, N.; Broadway, D.A.; Stacey, A.; Simpson, D.A.; Hollenberg, L.C.L. Quantum imaging of current flow in graphene. Sci. Adv. 2017, 3, e1602429. [Google Scholar] [CrossRef]
- Aharonovich, I.; Santori, C.; Fairchild, B.A.; Orwa, J.; Ganesan, K.; Fu, K.M.C.; Beausoleil, R.G.; Greentree, A.D.; Prawer, S. Producing optimized ensembles of nitrogen-vacancy color centers for quantum information applications. J. Appl. Phys. 2009, 106, 124904. [Google Scholar] [CrossRef]
- Botsoa, J.; Sauvage, T.; Adam, M.P.; Desgardin, P.; Leoni, E.; Courtois, B.; Treussart, F.; Barthe, M.F. Optimal conditions for NV- center formation in type-1b diamond studied using photoluminescence and positron annihilation spectroscopies. Phys. Rev. B 2011, 84, 125209. [Google Scholar] [CrossRef]
- McLellan, C.A.; Myers, B.A.; Kraemer, S.; Ohno, K.; Awschalom, D.D.; Bleszynski Jayich, A.C. Patterned Formation of Highly Coherent Nitrogen-Vacancy Centers Using a Focused Electron Irradiation Technique. Nano Lett. 2016, 16, 2450–2454. [Google Scholar] [CrossRef] [PubMed]
- Barry, J.F.; Schloss, J.M.; Bauch, E.; Turner, M.J.; Hart, C.A.; Pham, L.M.; Walsworth, R.L. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 2020, 92, 015004. [Google Scholar] [CrossRef]
- Choi, J.; Choi, S.; Kucsko, G.; Maurer, P.C.; Shields, B.J.; Sumiya, H.; Onoda, S.; Isoya, J.; Demler, E.; Jelezko, F.; et al. Depolarization Dynamics in a Strongly Interacting Solid-State Spin Ensemble. Phys. Rev. Lett. 2017, 118, 093601. [Google Scholar] [CrossRef] [PubMed]
- Schabikowski, M.; Wojciechowski, A.M.; Mitura-Nowak, M.; Mrózek, M.; Kruk, A.; Rajchel, B.; Gawlik, W.; Marszałek, M. Optical characterization of nitrogen-vacancy centers created by proton implantation in diamond. Acta Phys. Pol. A 2020. [Google Scholar] [CrossRef]
- Jin, H.; Bettiol, A.A. Influence of thermal annealing on the properties of proton implanted diamond waveguides. Carbon 2021, 171, 560–567. [Google Scholar] [CrossRef]
- Shin, C.S.; Avalos, C.E.; Butler, M.C.; Trease, D.R.; Seltzer, S.J.; Peter Mustonen, J.; Kennedy, D.J.; Acosta, V.M.; Budker, D.; Pines, A.; et al. Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit. J. Appl. Phys. 2012, 112, 124519. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Koike, J.; Parkin, D.M.; Mitchell, T.E. Displacement threshold energy for type IIa diamond. Appl. Phys. Lett. 1992, 60, 1450–1452. [Google Scholar] [CrossRef]
- Turaga, S.P.; Jin, H.; Teo, E.J.; Bettiol, A.A. Cross-sectional hyperspectral imaging of proton implanted diamond. Appl. Phys. Lett. 2019, 115, 021904. [Google Scholar] [CrossRef]
- Sasaki, K.; Monnai, Y.; Saijo, S.; Fujita, R.; Watanabe, H.; Ishi-Hayase, J.; Itoh, K.M.; Abe, E. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Rev. Sci. Instrum. 2016, 87, 053904. [Google Scholar] [CrossRef]
- Jarmola, A.; Acosta, V.M.; Jensen, K.; Chemerisov, S.; Budker, D. Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond. Phys. Rev. Lett. 2012, 108, 197601. [Google Scholar] [CrossRef]
- Hahn, E.L. Spin Echoes. Phys. Rev. 1950, 80, 580–594. [Google Scholar] [CrossRef]
- Pezzagna, S.; Naydenov, B.; Jelezko, F.; Wrachtrup, J.; Meijer, J. Creation efficiency of nitrogen-vacancy centres in diamond. New J. Phys. 2010, 12, 065017. [Google Scholar] [CrossRef]
- Levchenko, A.O.; Vasil’ev, V.V.; Zibrov, S.A.; Zibrov, A.S.; Sivak, A.V.; Fedotov, I.V. Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms. Appl. Phys. Lett. 2015, 106, 102402. [Google Scholar] [CrossRef]
- Jarmola, A.; Berzins, A.; Smits, J.; Smits, K.; Prikulis, J.; Gahbauer, F.; Ferber, R.; Erts, D.; Auzinsh, M.; Budker, D. Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond. Appl. Phys. Lett. 2015, 107, 242403. [Google Scholar] [CrossRef]
- Trofimov, S.D.; Tarelkin, S.A.; Bolshedvorskii, S.V.; Bormashov, V.S.; Troshchiev, S.Y.; Golovanov, A.V.; Luparev, N.V.; Prikhodko, D.D.; Boldyrev, K.N.; Terentiev, S.A.; et al. Spatially controlled fabrication of single NV centers in IIa HPHT diamond. Opt. Mater. Express 2020, 10, 198–207. [Google Scholar] [CrossRef]
- Stepanov, V.; Takahashi, S. Determination of nitrogen spin concentration in diamond using double electron-electron resonance. Phys. Rev. B 2016, 94, 024421. [Google Scholar] [CrossRef]
- Van Wyk, J.A.; Reynhardt, E.C.; High, G.L.; Kiflawi, I. The dependences of ESR line widths and spin - spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond. J. Phys. Appl. Phys. 1997, 30, 1790–1793. [Google Scholar] [CrossRef]
- Choi, S.; Choi, J.; Landig, R.; Kucsko, G.; Zhou, H.; Isoya, J.; Jelezko, F.; Onoda, S.; Sumiya, H.; Khemani, V.; et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 2017. [Google Scholar] [CrossRef] [PubMed]
- Alsid, S.T.; Barry, J.F.; Pham, L.M.; Schloss, J.M.; O’Keeffe, M.F.; Cappellaro, P.; Braje, D.A. Photoluminescence Decomposition Analysis: A Technique to Characterize N-V Creation in Diamond. Phys. Rev. Appl. 2019, 12, 044003. [Google Scholar] [CrossRef]
- Bauch, E.; Singh, S.; Lee, J.; Hart, C.A.; Schloss, J.M.; Turner, M.J.; Barry, J.F.; Pham, L.; Bar-Gill, N.; Yelin, S.F.; et al. Decoherence of dipolar spin ensembles in diamond. arXiv 2019, arXiv:1904.08763. [Google Scholar]
- Bauch, E.; Hart, C.A.; Schloss, J.M.; Turner, M.J.; Barry, J.F.; Kehayias, P.; Singh, S.; Walsworth, R.L. Ultralong Dephasing Times in Solid-State Spin Ensembles via Quantum Control. Phys. Rev. X 2018, 8, 031025. [Google Scholar] [CrossRef]
- Lei, C.; Peng, S.; Ju, C.; Yung, M.H.; Du, J. Decoherence Control of Nitrogen-Vacancy Centers. Sci. Rep. 2017. [Google Scholar] [CrossRef]
- Wojciechowski, A.M.; Karadas, M.; Osterkamp, C.; Jankuhn, S.; Meijer, J.; Jelezko, F.; Huck, A.; Andersen, U.L. Precision temperature sensing in the presence of magnetic field noise and vice versa using nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 2018, 113, 013502. [Google Scholar] [CrossRef]
- Kleinsasser, E.E.; Stanfield, M.M.; Banks, J.K.Q.; Zhu, Z.; Li, W.D.; Acosta, V.M.; Watanabe, H.; Itoh, K.M.; Fu, K.M.C. High density nitrogen-vacancy sensing surface created via He+ ion implantation of 12C diamond. Appl. Phys. Lett. 2016, 108, 202401. [Google Scholar] [CrossRef]
- Genish, H.; Ganesan, K.; Stacey, A.; Prawer, S.; Rosenbluh, M. Effect of radiation damage on the quantum optical properties of nitrogen vacancies in diamond. Diam. Relat. Mater. 2020, 109, 108049. [Google Scholar] [CrossRef]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [PubMed]
Spot Number | Dose [ions/cm] |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 |
Type of Diamond | Initial N Concentration [ppm] | Energy [MeV] | Type Implantation | Depth [m] | Dose [cm] | [ms] | [s] | Authors |
---|---|---|---|---|---|---|---|---|
HPHT | 200 | 0.2 | electron | 20 | – | 4.8–0.83 | Jarmola et al. [36] | |
CVD | 0.1 | 1 | electron | – | 5.5 | 100–300 | Alsid et al. [41] | |
CVD | 10 | 1.8 | He | 1 | 1 () | Wojciechowski et al. [45] | ||
HPHT CVD | 50–0.5 | 0.05 | He | 0.25 | 0.3 () | Trofimov et al. [37] | ||
CVD | 0.001 | 0.15–0.05 | He | 0.1 | – | 1.5 () | Kleinsasser et al. [46] | |
CVD | 0.005 | 2 | He | 3.4 | – | 150 | Genish et al. [47] | |
CVD | 200 | 2 | proton | 25 | – | Jin et al. [26] | ||
HPHT | 50 | 1.8 | proton | 20 | – | 6–1.25 | 2.5–1.1 | This paper |
HPHT CVD | 100 0.001 | non implantation | 1 300 | Rodin et al. [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrózek, M.; Schabikowski, M.; Mitura-Nowak, M.; Lekki, J.; Marszałek, M.; Wojciechowski, A.M.; Gawlik, W. Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond. Materials 2021, 14, 833. https://doi.org/10.3390/ma14040833
Mrózek M, Schabikowski M, Mitura-Nowak M, Lekki J, Marszałek M, Wojciechowski AM, Gawlik W. Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond. Materials. 2021; 14(4):833. https://doi.org/10.3390/ma14040833
Chicago/Turabian StyleMrózek, Mariusz, Mateusz Schabikowski, Marzena Mitura-Nowak, Janusz Lekki, Marta Marszałek, Adam M. Wojciechowski, and Wojciech Gawlik. 2021. "Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond" Materials 14, no. 4: 833. https://doi.org/10.3390/ma14040833
APA StyleMrózek, M., Schabikowski, M., Mitura-Nowak, M., Lekki, J., Marszałek, M., Wojciechowski, A. M., & Gawlik, W. (2021). Nitrogen-Vacancy Color Centers Created by Proton Implantation in a Diamond. Materials, 14(4), 833. https://doi.org/10.3390/ma14040833