# Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design of Dual-Wave Bar and Its Experimental Analysis

#### 2.1. Design of Wedge-Shaped, Dual-Wave Bar

#### 2.2. Synchronicity of Stress Wave Propagation

#### 2.3. Analysis for Propagation of Stress Wave

## 3. Biaxial SHPB Experimental Device

## 4. Theory Study of Biaxial Impact Loading

_{0}is the wave speed in a bar and l and A

_{s}are the specimen length and area, respectively.

## 5. Experimental Results and Analysis

#### 5.1. Effectiveness Analysis

#### 5.2. Application of Biaxial SHPB

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kolsky, H. An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B
**1949**, 62, 676–700. [Google Scholar] [CrossRef] - Pan, B.; Wang, X.G.; Xu, Z.Y.; Guo, L.J.; Wang, X.S. Experimental and numerical study of fracture behavior of rock-like material specimens with single pre-set joint under dynamic loading. Materials
**2021**, 14, 2690. [Google Scholar] [CrossRef] - Frew, D.J.; Forrestal, M.J.; Chen, W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp. Mech.
**2001**, 41, 40–46. [Google Scholar] [CrossRef] - Chen, X.D.; Zhou, J.K. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr. Build. Mater.
**2013**, 47, 419–430. [Google Scholar] [CrossRef] - Huang, S.; Feng, X.T.; Xia, K. A dynamic punch method to quantify the dynamic shear strength of brittle solids. Rev. Sci. Instrum.
**2011**, 82, 053901. [Google Scholar] [CrossRef] - Chen, W.; Song, B.; Frew, D.J.; Forrestal, M.J. Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar. Exp. Mech.
**2003**, 43, 20–23. [Google Scholar] [CrossRef] - Song, B.; Chen, W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops. Exp. Mech.
**2004**, 44, 622–627. [Google Scholar] [CrossRef] - Liu, Z.; Chen, X.; Lv, X.; Xie, H. A mini desktop impact test system using multistage electromagnetic launch. Measurement
**2014**, 49, 68–76. [Google Scholar] [CrossRef] - Liu, J.; Chen, T.; Zhang, Y.; Wen, G.; Qiang, Q.; Wang, H.; Xie, Y.M. On sound insulation of pyramidal lattice sandwich structure. Compos. Struct.
**2019**, 208, 385–394. [Google Scholar] [CrossRef] [Green Version] - Wouts, J.; Haugou, G.; Oudjene, M.; Coutellier, D.; Morvan, H. Strain rate effects on the compressive response of wood and energy absorption capabilities–Part A: Experimental investigations. Compos. Struct.
**2016**, 149, 315–328. [Google Scholar] [CrossRef] - Pang, S.; Liang, Y.; Tao, W.; Liu, Y.; Huan, S.; Qin, H. Effect of the Strain Rate and Fiber Direction on the Dynamic Mechanical Properties of Beech Wood. Forests
**2019**, 10, 881. [Google Scholar] [CrossRef] [Green Version] - Christensen, R.J.; Swanson, S.R.; Brown, W.S. Split-Hopkinson-bar tests on rock under confining pressure. Exp. Mech.
**1972**, 12, 508–513. [Google Scholar] [CrossRef] - Gary, G.; Bailly, P. Behaviour of quasi-brittle material at high strain rate. Experiment and modelling. Eur. J. Mech. A/Solids
**1998**, 17, 403–420. [Google Scholar] [CrossRef] [Green Version] - Gong, J.C.; Malvern, L.F. Passively confined tests of axial dynamic compressive strength of concrete. Exp. Mech.
**1990**, 3, 55–59. [Google Scholar] [CrossRef] - Chen, W.; Ravichandran, G. Dynamic compressive failure of a glass ceramic under lateral confinement. J. Mech. Phys. Solids
**1997**, 45, 1303–1328. [Google Scholar] [CrossRef] - Shi, S.; Wang, L. Passive confined pressure SHPB test method for materials under quasi-one-dimensional strain state. Exp. Mech.
**2000**, 15, 377–384. [Google Scholar] - Forquin, P.; Gary, G.; Gatuingt, F. A testing technique for concrete under confinement at high rates of strain. Int. J. Impact Eng.
**2008**, 35, 425–446. [Google Scholar] [CrossRef] [Green Version] - Chen, J.Y.; Zhang, Z.X.; Dong, H.W.; Zhu, J. Experimental study on dynamic damage evolution of concrete under multi-axial stresses. Eng. Fail. Anal.
**2011**, 18, 1784–1790. [Google Scholar] [CrossRef] - Luo, H.; Lu, H.; Cooper, W.L.; Komanduri, R. Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates. Exp. Mech.
**2011**, 51, 1499–1510. [Google Scholar] [CrossRef] - Zhai, Y.; Li, Y.; Li, Y.; Zhang, Y.; Lu, M. Impact compression test and numerical simulation analysis of concrete after thermal treatment in complex stress state. Materials
**2019**, 12, 1938. [Google Scholar] [CrossRef] [Green Version] - Yin, Z.; Li, X.; Jin, J.; He, X.; Du, K. Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading. Trans. Nonferrous Met. Soc. China
**2012**, 22, 175–184. [Google Scholar] [CrossRef] - Chen, W.; Lu, F. A technique for dynamic proportional multiaxial compression on soft materials. Exp. Mech.
**2000**, 40, 226–230. [Google Scholar] [CrossRef] - Nemat-Nasser, S.; Isaacs, J.; Rome, J. Mechanical Testing and Evaluation; ASM International: Material Park, OH, USA, 2000; pp. 516–518. [Google Scholar] [CrossRef]
- Shi, S.; Yu, B.; Wang, L. The dynamic impact experiments under active confining pressure and the constitutive equation of PP/PA blends at multi-axial compressive stress state. Macromol. Symp.
**2009**, 286, 53–59. [Google Scholar] - Li, X.; Zhou, Z.; Lok, T.S.; Hong, L.; Yin, T. Innovative testing technique of rock subjected to coupled static and dynamic loads. Int. J. Rock Mech. Min. Sci.
**2008**, 45, 739–748. [Google Scholar] [CrossRef] - Gong, F.Q.; Si, X.F.; Li, X.B.; Wang, S.Y. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar. Int. J. Rock Mech. Min. Sci.
**2019**, 113, 211–219. [Google Scholar] [CrossRef] - Si, X.; Gong, F.; Li, X.; Wang, S.; Luo, S. Dynamic Mohr-Coulomb and Hoek-Brown strength criteria of sandstone at high strain rates. Int. J. Rock Mech. Min. Sci.
**2019**, 115, 48–59. [Google Scholar] [CrossRef] - Liu, S.; Xu, J.; Lv, X. Influence of confining pressure and impact loading on mechanical properties of amphibolite and sericite-quartz schist. Earthq. Eng. Eng. Vib.
**2014**, 13, 215–222. [Google Scholar] [CrossRef] - Guo, H.; Guo, W.; Zhai, Y.; Sun, Y. Experimental and modeling investigation on the dynamic response of granite after high-temperature treatment under different pressures. Constr. Build. Mater.
**2017**, 155, 427–440. [Google Scholar] [CrossRef] - Li, E.; Gao, L.; Jiang, X.; Duan, J.; Pu, S.; Wang, J. Analysis of dynamic compression property and energy dissipation of salt rock under three-dimensional pressure. Environ. Earth Sci.
**2019**, 78, 388. [Google Scholar] [CrossRef] - Luo, H.; Du, Y.; Hu, Z.; Cooper, W.L.; Lu, H. High-strain rate compressive behavior of glass beads under confinement. Exp. Mech.
**2015**, 55, 935–950. [Google Scholar] [CrossRef] - Ma, Q.; Ma, D.; Yuan, P.; Yao, Z. Energy absorption characteristics of frozen soil based on SHPB test. Adv. Mater. Sci. Eng.
**2018**, 1, 1–9. [Google Scholar] [CrossRef] [Green Version] - Ma, D.; Ma, Q.; Yao, Z.; Yuan, P.; Zhang, R. Dynamic mechanical properties and failure mode of artificial frozen silty clay subject to one-dimensional coupled static and dynamic loads. Adv. Civ. Eng.
**2019**, 4160804. [Google Scholar] [CrossRef] - Ma, D.; Ma, Q.; Yao, Z.; Huang, K. Static-dynamic coupling mechanical properties and constitutive model of artificial frozen silty clay under triaxial compression. Cold Reg. Sci. Technol.
**2019**, 167, 102858. [Google Scholar] [CrossRef] - Albertini, C.; Montagnani, M. Study of the true tensile stress-strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle. J. Phys. IV France
**1994**, 4, 113–118. [Google Scholar] [CrossRef] [Green Version] - Albertini, C.; Cadoni, E.; Labibes, K. Study of the mechanical properties of plain concrete under dynamic loading. Exp. Mech.
**1999**, 39, 137–141. [Google Scholar] [CrossRef] - Cadoni, E.; Albertini, C. Advances in Rock Dynamics and Applications; CRC Press: Hoboken, NJ, USA, 2011; pp. 79–104. [Google Scholar]
- Cadoni, E. Rock Dynamics and Applications: States of Art; CRC Press: Hoboken, NJ, USA, 2013; pp. 137–148. [Google Scholar]
- Xu, S.; Shan, J.; Zhang, L.; Zhou, L.; Gao, G.; Hu, S.; Wang, P. Dynamic compression behaviors of concrete under true triaxial confinement: An experimental technique. Mech. Mater.
**2019**, 140, 103220. [Google Scholar] [CrossRef] - Liu, K.; Zhang, Q.B.; Wu, G.; Li, J.C.; Zhao, J. Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial hopkinson bar. Rock Mech. Rock Eng.
**2019**, 52, 2175–2195. [Google Scholar] [CrossRef] - Hummeltenberg, A.; Curbach, M. Design and construction of a biaxial Split-Hopkinson-bar. Beton-Und Stahlbetonbau
**2012**, 107, 394–400. [Google Scholar] [CrossRef] - Huan, S.; Tao, W. Three-Dimensional Impact Loading Experimental Device. Chinese Patent CN201110141805.4, 31 August 2011. [Google Scholar]
- Cui, J.; Hao, H.; Shi, Y.C.; Zhang, X.H.; Huan, S. Volumetric properties of concrete under true triaxial dynamic compressive loadings. J. Mater. Civ. Eng.
**2019**, 31, 04019126–1–10. [Google Scholar] [CrossRef] - Nie, H.; Suo, T.; Wu, B.; Li, Y.; Zhao, H. A versatile split Hopkinson pressure bar using electromagnetic loading. Int. J. Impact Eng.
**2018**, 116, 94–104. [Google Scholar] [CrossRef] - Nie, H.; Suo, T.; Shi, X.; Liu, H.; Li, Y.; Han, Z. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators. Int. J. Impact Eng.
**2018**, 122, 73–82. [Google Scholar] [CrossRef] - Guo, Y.; Du, B.; Liu, H.; Ding, Z.; Zhao, Z.; Tang, Z.; Suo, T.; Li, Y. Electromagnetic Hopkinson bar: A powerful scientific instrument to study mechanical behavior of materials at high strain rates. Rev. Sci. Instrum.
**2020**, 91, 081501. [Google Scholar] [CrossRef] - Xie, H.; Zhu, J.; Zhou, T.; Zhao, J. Novel Three-dimensional rock dynamic tests using the true triaxial electromagnetic hopkinson bar system. Rock Mech. Rock Eng.
**2021**, 54, 2079–2086. [Google Scholar] [CrossRef] - Zhao, P.D.; Lu, F.Y.; Lin, Y.L.; Chen, R.; Li, J.L.; Lu, L. Technique for combined dynamic compression–shear testing of PBXs. Exp. Mech.
**2012**, 52, 205–213. [Google Scholar] [CrossRef] - Lin, Y.L.; Qin, J.G.; Chen, R.; Zhao, P.D.; Lu, F.Y. A technique for measuring dynamic friction coefficient under impact loading. Rev. Sci. Instrum.
**2014**, 85, 094501. [Google Scholar] [CrossRef] - Wang, H.C.; Zhao, J.; Li, J.; Liu, K.; Braithwaite, C.H.; Zhang, Q.B. Dynamic mechanical properties and fracturing behaviour of concrete under biaxial compression. Constr. Build. Mater.
**2021**, 301, 124085. [Google Scholar] [CrossRef]

**Figure 5.**Wave pulse signals of lateral point and medial point at different distances (without lubricant).

**Figure 6.**Average values of wave pulse signals of lateral point and medial point at different distances.

**Figure 7.**Wave pulse signals of lateral point and medial point at different distances (with lubricant).

**Figure 9.**Wave pulse signals of lateral point and medial point at different distances (with gaskets).

Material | Density [g/cm^{3}] | Young’s Modulus [GPa] | Poisson’s Ratio | Diameter × Length [mm × mm] | Angle [°] | |
---|---|---|---|---|---|---|

Striker bar 1 | SUS304 | 7.93 | 193 | 0.3 | Ø50 × 150 | - |

Striker bar 2 | SUS304 | 7.93 | 193 | 0.3 | Ø50 × 200 | - |

DWB | SUS304 | 7.93 | 193 | 0.3 | Ø40 × 1514.14 | 70 |

Transmission bar | SUS304 | 7.93 | 193 | 0.3 | Ø20 × 1499.61 | - |

Material | Density [g/cm ^{3}] | Young’s Modulus [GPa] | Poisson’s Ratio | Diameter × Length [mm × mm] | Angle [°] | |
---|---|---|---|---|---|---|

Striker bar | SUS304 | 7.93 | 193 | 0.3 | Ø50 × 200 | - |

DWB A | SUS304 | 7.93 | 193 | 0.3 | Ø40 × 1514.14 | 70 |

DWB B1/B2 | SUS304 | 7.93 | 193 | 0.3 | Ø20 × 1499.61 | 160 |

Balance bar C1/C2 | SUS304 | 7.93 | 193 | 0.3 | Ø10 × 1210 | - |

Incident bar D1/D2 | SUS304 | 7.93 | 193 | 0.3 | Ø10 × 1210 | - |

Transmission bar E1/E2 | SUS304 | 7.93 | 193 | 0.3 | Ø10 × 1210 | - |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pang, S.; Tao, W.; Liang, Y.; Huan, S.; Liu, Y.; Chen, J.
Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application. *Materials* **2021**, *14*, 7298.
https://doi.org/10.3390/ma14237298

**AMA Style**

Pang S, Tao W, Liang Y, Huan S, Liu Y, Chen J.
Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application. *Materials*. 2021; 14(23):7298.
https://doi.org/10.3390/ma14237298

**Chicago/Turabian Style**

Pang, Shumeng, Weijun Tao, Yingjing Liang, Shi Huan, Yijie Liu, and Jiangping Chen.
2021. "Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application" *Materials* 14, no. 23: 7298.
https://doi.org/10.3390/ma14237298