Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Mediums
2.2. Chemical Analysis
2.3. Microorganisms
2.4. Biodegradation Experiments
2.5. Modelling Kinetics of Cell Growth on Phenol
2.6. Modelling Kinetics of Cell Growth on Phenol in the Presence of Metal
3. Results and Discussion
3.1. Phenol Degradation by Stenotrophomonas Maltophilia KB2
3.2. Different Phenol Concentrations and Constant Nickel Concentration
3.2.1. Heavy Metal Tolerance Determination
3.2.2. Constant Nickel Concentration
3.3. Different Nickel Concentrations and Constant Phenol Concentration
3.4. Modelling the Specific Growth Rate as a Function of Different Nickel Concentrations
3.4.1. First Model
3.4.2. Second Model
3.4.3. Third Model
- -
- according to Amor
- -
- according to Nakamura
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mainali, K. Phenolic compounds contaminants in water: A Glance. Curr. Trends Civil Struct. Eng. 2020, 4, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Monaco, D.; Chianese, E.; Riccio, A.; Delgado-Sanchez, A.; Lacorte, S. Spatial distribution of heavy hydrocarbons, PAHs and metals in polluted areas. The case of “Galicia” Spain. Marine Pollut. Bull. 2017, 121, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Mali, M.; Dell′Anna, M.M.; Mastrorilli, P.; Damiani, L.; Piccinni, A.F. Assessment and source identification of pollution risk for touristic ports: Heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy). Marine Pollut. Bull. 2017, 114, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, G.; Karbassi, A.; Khoramnejadian, S.; Khoramnejadian, S.; Nasrabadi, T. Evaluation of urban soil pollution: A combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). Int. J. Environ. Res. 2019, 13, 801–811. [Google Scholar] [CrossRef]
- Borjac, J.; El Joumaa, M.; Kawach, R.; Youssef, L.; Blake, D. Heavy metals and organic compounds contamination in leachates collected from Deir Kanoun Ras El Ain dump and its adjacent canal in South Lebanon. Heliyon 2019, 5, e02212. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Priority Pollutant List (Toxic and Priority Pollutants Under the Clean Water Act/Effluent Guidelines/US EPA); US EPA: Washington, DC, USA, 2014.
- Mohd, A. Presence of phenol in Wastewater effluent and its removal: An overview. Int. J. Environ. Anal. Chem. 2020, 1–23. [Google Scholar] [CrossRef]
- Saraireh, R.; Asasfeh, B.; Saraireh, M.; Shiyyab, K.; Shawawreh, R. Biodegradation of phenol: Mini review. J. Basic Appl. Res. Biomed. 2020, 6, 53–61. [Google Scholar] [CrossRef]
- Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, S.M.; Naushad, M.; Ahamad, T.; Alothman, Z.A.; Aldalbahi, A. Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium. Chem. Eng. J. 2014, 254, 181–189. [Google Scholar] [CrossRef]
- Ban, F.; Nan, H.; Jin, Q.; Wang, Y. Degradation of phenol by visible light assisted electrocatalytic treatment using N-V co-doped TiO2 as photocatalyst and response surface methodology. Int. J. Electrochem. Sci. 2021, 16, 210648. [Google Scholar] [CrossRef]
- Sidor, K.; Berniak, T.; Łątka, P.; Rokicińska, A.; Michalik, M.; Kuśtrowski, P. Tailoring properties of resol resin-derived spherical carbons for adsorption of phenol from aqueous solution. Molecules 2021, 26, 1736. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Liu, S.; Peng, Y.; Chen, J.; Yoo Ki, S. Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultras. Sonochem. 2020, 65, 105058. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Jena, H.M. Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Braz. J. Chem. Eng. 2017, 34, 75–84. [Google Scholar] [CrossRef]
- Rucká, L.; Nešvera, J.; Pátek, M. Biodegradation of phenol and its derivatives by engineered bacteria: Current knowledge and perspectives. World J. Microbiol. Biotechnol. 2017, 33, 174. [Google Scholar] [CrossRef]
- Wen, Y.; Li, C.; Song, X.; Yang, Y. Biodegradation of phenol by Rhodococcus Sp. Strain SKC: Characterization and kinetics study. Molecules 2020, 25, 3665. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.; Koblitz, J.; Albersmeier, A.; Kalinowski, J.; Siebers, B.; Schomburg, D.; Neumann-Schaal, M. Utilization of phenol as carbon source by the thermoacidophilic archaeon Saccharolobus solfataricus P2 is limited by oxygen supply and the cellular stress response. Front. Microbiol. 2021, 11, 587032. [Google Scholar] [CrossRef]
- Mulrooney, S.B.; Hausinger, R.P. Nickel uptake and utilization by microorganisms. FEMS Microbiol. Rev. 2003, 27, 239–261. [Google Scholar] [CrossRef]
- Asitok, A.; Antai, S.; Eyong, E.; Ekpenyong, M. Growth dynamics of pseudomonas fluorescens and Vibrio fluvialis exposed to various concentrations of nickel. IJISRT 2019, 4, 471–479. [Google Scholar]
- Atagana, H.I.A. Biodegradation of PAHs by fungi in contaminated-soil containing cadmium and nickel ions. Afr. J. Biotechnol. 2009, 8, 5780–5789. [Google Scholar] [CrossRef] [Green Version]
- Macomber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 2011, 3, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeer-Wanklyn, C.J.; Zamble, D.B. Microbial nickel: Cellular uptake and delivery to enzyme centers. Curr. Opin. Chem. Biol. 2017, 37, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Sandrin, T.R.; Maier, R.M. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspect. 2003, 111, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Oves, M.; Khan, M.S.; Qari, A.H.; Felemban, M.N.; Almeelbi, T. Heavy metals: Biological importance and detoxification strategies. J. Bioremed. Biodeg. 2016, 7, 334. [Google Scholar] [CrossRef]
- Pastor, J.; Hernandez, A.J. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: Determinants for restoring their impact. J. Environ. Manag. 2012, 95, S42–S49. [Google Scholar] [CrossRef] [PubMed]
- Bucko-Serafin, A. The State of the Environment in Silesian Voivodeship in 2017; Provincial Inspectorate for Environmental Protection in Katowice, Biblioteka Monitoringu Środowiska: Katowice, Poland, 2018. (In Polish) [Google Scholar]
- Ahmad, S.A.; Asokan, G.; Yasid, N.A.; Nawawi, N.M.; Subramaniam, K.; Nadhirah, N.; Shukor, M.Y. Effect of heavy metals on biodegradation of phenol by antarctic bacterium: Arthrobacter bambusae strain AQ5-003. MJBMB 2018, 2, 47–51. [Google Scholar]
- Duraisamy, P.; Sekar, J.; Arunkumar, A.D.; Ramalingam, P.V. Kinetics of phenol biodegradation by heavy metal tolerant rhizobacteria glutamicibacter nicotianae MSSRFPD35 from distillery effluent contaminated soils. Front. Microbiol. 2020, 11, 1573. [Google Scholar] [CrossRef]
- Ahmad, S.; Shamaan, N.; Syed, M.; Dahalan, F.; Khalil, K.A.; Ab Rahman, N.; Shukor, M. Phenol degradation by Acinetobacter Sp. in the presence of heavy metals. J. Natn. Sci. Found. Sri Lanka 2017, 45, 247. [Google Scholar] [CrossRef] [Green Version]
- Mei, R.; Zhou, M.; Xu, L.; Zhang, Y.; Su, X. Characterization of a pH-tolerant strain Cobetia Sp. SASS1 and its phenol degradation performance under salinity condition. Front. Microbiol. 2019, 10, 2034. [Google Scholar] [CrossRef] [Green Version]
- Aisami, A.; Yasid, N.A.; Shukor, M.Y. Optimization of cultural and physical parameters for phenol biodegradation by newly identified Pseudomonas Sp. AQ5-04. J. Trop. Life Sci. 2020, 10, 223–233. [Google Scholar] [CrossRef]
- Jiang, Y.; Shang, Y.; Yang, K.; Wang, H. Phenol degradation by halophilic fungal isolate JS4 and evaluation of its tolerance of heavy metals. Appl. Microbiol. Biotechnol. 2016, 100, 1883–1890. [Google Scholar] [CrossRef]
- Zhong, C.; Zhao, J.; Chen, W.; Wu, D.; Cao, G. Biodegradation of hydrocarbons by microbial strains in the presence of Ni and Pb. 3 Biotech. 2020, 10, 18. [Google Scholar] [CrossRef]
- Shafiei, F.; Watts, M.P.; Pajank, L.; Moreau, J.W. The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings. Appl. Microbiol. Biotechnol. 2021, 105, 417–427. [Google Scholar] [CrossRef]
- Zakaria, N.N.; Roslee, A.F.A.; Gomez-Fuentes, C.; Zulkharnain, A.; Abdulrasheed, M.; Sabri, S.; Ramírez-Moreno, N.; Calisto-Ulloa, N.; Ahmad, S.A. Kinetic studies of marine psychrotolerant microorganisms capable of degrading diesel in the presence of heavy metals. Rev. Mex. Ing. Quím. 2020, 19, 1375–1388. [Google Scholar] [CrossRef]
- Abdulrasheed, M.; Roslee, A.F.; Zakaria, N.N.; Zulkharnain, A.; Lee, G.L.Y.; Convey, P.; Napis, S.; Ahmad, S.A. Effects of heavy metals on diesel metabolism of psychrotolerant strains of Arthrobacter Sp. from Antarctica. JEB 2020, 41, 966–972. [Google Scholar] [CrossRef]
- Riis, V.; Babel, W.; Pucci, O.H. Influence of heavy metals on the microbial degradation of diesel fuel. Chemosphere 2002, 49, 559–568. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Ilori, M.O.; Obayori, O.S.; Amund, O.O. Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt: Petroleum hydrocarbon biodegradation in heavy metal-rich system. J. Basic Microbiol. 2013, 53, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Taketani, N.F.; Taketani, R.G.; Leite, S.G.F.; Melo, I.S.; Lima-Rizzo, A.C.; Andreote, F.D.; da Cunha, C.D. Effect of nickel in the degradation of oil in soils contaminated with petroleum and nickel. IJAERS 2020, 7, 511–521. [Google Scholar] [CrossRef]
- AL-Saleh, E.; Obuekwe, C. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils. J. Basic Microbiol. 2009, 49, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Guzik, U.; Greń, I.; Wojcieszyńska, D.; Łabużek, S. Isolation and characterization of a novel strain of Stenotrophomonas Maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz. J. Microbiol. 2009, 40, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Wojcieszyńska, D.; Greń, I.; Łabużek, S.; Respondek, M. Substrate specificity and sensitiveness of phenol monooxygenase from Stenotrophomonas maltophilia strain KB2 versus their potential application to bioremediation of the environment. Biotechnologia 2007, 2, 181–191. [Google Scholar]
- Guzik, U.; Wojcieszyńska, D.; Greń, I.; Hupert-Kocurek, K. Activity of Catechol Dioxygenases in the Presence of Some Heavy Metal Ions: Bioremediation of an Environment Polluted with Aromatic Compounds. Ochrona Środowiska 2010, 32, 9–13. [Google Scholar]
- Christen, P.; Vega, A.; Casalot, L.; Simon, G.; Auria, R. Kinetics of aerobic phenol biodegradation by the acidophilic and hyper thermophilic archaeon Sulfolobus solfataricus 98/2. Biochem. Eng. J. 2012, 62, 56–61. [Google Scholar] [CrossRef]
- Dayana Priyadharshini, S.; Bakthavatsalam, A.K. A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant. J. Environ. Chem. Eng. 2019, 7, 103079. [Google Scholar] [CrossRef]
- Nakamura, Y.; Sawada, T. Biodegradation of phenol in the presence of heavy metals. J. Chem. Technol. Biotechnol. 2000, 75, 37–142. [Google Scholar] [CrossRef]
- Amor, L.; Kennes, C.; Veiga, M.C. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Biores. Technol. 2001, 78, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-W.; Cheng, Y.-W.; Tsai, S.-L. Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi. Chemosphere 2007, 69, 1485–1491. [Google Scholar] [CrossRef]
- Han, K.; Levenspiel, O. Extended monod kinetics for substrate, product, and cell inhibition. Biotechnol. Bioeng. 1988, 32, 430–447. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Kathiravan, M.N.; Srinivasan, R.; Sankaranarayanan, S. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo Red by Pseudomonas Sp. mutant. Biores. Technol. 2011, 102, 3687–3693. [Google Scholar] [CrossRef]
- Shukor, M.Y.; Gusmanizar, N. Modelling the effect of heavy metals on the growth rate of Enterobacter Sp. strain neni-13 on SDS. JEMAT 2018, 6, 24–27. [Google Scholar]
- Manogaran, M.; Othman, A.R.; Shukor, M.Y.; Halmi, M.I.E. Modelling the effect of heavy metal on the growth rate of an SDS-degrading Pseudomonas Sp. strain DRY15 from Antarctic soil. BSTR 2019, 7, 41–45. [Google Scholar]
- Kai, E.X.; Johari, W.L.W.; Habib, S.; Adeela, N.; Ahmad, S.A.; Shukor, M.Y. The growth of the Rhodococcus Sp. on diesel fuel under the effect of heavy metals and different concentrations of zinc. Adv. Polar Sci. 2020, 31, 132–136. [Google Scholar] [CrossRef]
- Al-Defiery, M.E.J.; Reddy, G. Influence of metal ions concentration on phenol degradation by Rhodococcus pyridinivorans GM3. Mesop. Environ. J. 2014, 1, 30–38. [Google Scholar]
- Li, C.-M.; Wu, H.-Z.; Wang, Y.-X.; Zhu, S.; Wei, C.-H. Enhancement of phenol biodegradation: Metabolic division of labor in co-culture of Stenotrophomonas Sp. N5 and Advenella Sp. B9. J. Hazard. Mater. 2020, 400, 123214. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Gu, Y.-J. Biodegradation kinetic studies of phenol and P-cresol in a batch and continuous stirred-tank bioreactor with Pseudomonas putida ATCC 17484 cells. Processes 2021, 9, 133. [Google Scholar] [CrossRef]
- Sam, S.P.; Ng, S.L.; Rohana, A. Kinetics of biodegradation of phenol and p-nitrophenol by acclimated activated sludge. J. Phys. Sci. 2018, 29, 107–113. [Google Scholar] [CrossRef]
- El-Deeb, B. Natural combination of genetic systems for degradation of phenol and resistance to heavy metals in phenol and cyanide assimilating bacteria. MJM 2009, 5, 94–103. [Google Scholar] [CrossRef]
- Gupta, K.; Chatterjee, C.; Gupta, B. Isolation and characterization of heavy metal tolerant gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur Canal (Kolkata), West Bengal, India. Biologia 2012, 67, 827–836. [Google Scholar] [CrossRef]
- Singh, V.; Chauhan, P.K.; Kanta, R.; Dhewa, T.; Kumar, V. Isolation and characterization of pseudomonas resistant to heavy metals contaminants. Int. J. Pharm. Sci. Rev. Res. 2010, 3, 164–167. [Google Scholar]
- Nwanyanwu, C.; Nweke, C.; Orji, J.; Opurum, C. Phenol and heavy metal tolerance among petroleum refinery effluent bacteria. J. Res. Biol. 2013, 3, 922–931. [Google Scholar]
- Benmalek, Y.; Fardeau, M.-L. Isolation and characterization of metal-resistant bacterial strain from wastewater and evaluation of its capacity in metal-ions removal using living and dry bacterial cells. Int. J. Environ. Sci. Technol. 2016, 13, 2153–2162. [Google Scholar] [CrossRef] [Green Version]
Strain | µmax Parameter of Andrews Model (h−1) | KS (g·m−3) | KIS (g·m−3) | µmax* True Maximum Growth Rate (h−1) | Ref. |
---|---|---|---|---|---|
Mixed culture (Stenotrophomonas sp. N5, Advenella sp. B9) | 0.08098 | 188.1 | 965.3 | 0.043 | [55] |
Pseudomonas putida ATCC17484 | 0.45 | 221.4 | 310.5 | 0.17 | [56] |
Rhodococcus sp. SKC | 0.3 | 36.4 | 418.8 | 0.175 | [16] |
Activated sludge | 0.4039 | 5.393 | 550.8 | 0.34 | [57] |
Glutamibacter nicotianae MSSRFPD35 | 0.574 | 20.29 | 268.1 | 0.375 | [28] |
Stenotrophomonas maltophilia KB2 | 1.584 | 185.4 | 106.1 | 0.43 | This study |
Nickel Concentration (g·m−3) | µmax (h−1) | KS (g·m−3) | KIS (g·m−3) | R2 |
---|---|---|---|---|
0 | 1.584 | 185.4 | 106.1 | 0.9947 |
1.667 | 0.1999 | 6.2235 | - | 0.947 |
3.333 | 0.1089 | 5.6025 | - | 0.9931 |
Equation Number | μmax (h−1) | KS (g·m−3) | KIS (g·m−3) | KIM (g·m−3) | Mcrit (g·m−3) | k | n | R2 |
---|---|---|---|---|---|---|---|---|
(4) | 0.2647 | 33.3 | 5.1975 | 0.904 | ||||
(5) | 0.2778 | −0.2107 | 0.937 | |||||
(6) | 1.584 | 185.367 | 106.137 | 0.918 | 1.0 | 0.988 | ||
(6) | 1.584 | 185.367 | 106.137 | 1.249 | 1.0706 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gąszczak, A.; Szczyrba, E.; Szczotka, A.; Greń, I. Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2. Materials 2021, 14, 6058. https://doi.org/10.3390/ma14206058
Gąszczak A, Szczyrba E, Szczotka A, Greń I. Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2. Materials. 2021; 14(20):6058. https://doi.org/10.3390/ma14206058
Chicago/Turabian StyleGąszczak, Agnieszka, Elżbieta Szczyrba, Anna Szczotka, and Izabela Greń. 2021. "Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2" Materials 14, no. 20: 6058. https://doi.org/10.3390/ma14206058
APA StyleGąszczak, A., Szczyrba, E., Szczotka, A., & Greń, I. (2021). Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2. Materials, 14(20), 6058. https://doi.org/10.3390/ma14206058