Spark Plasma Sintering of Aluminum-Based Powders Reinforced with Carbon Nanotubes: Investigation of Electrical Conductivity and Hardness Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dispersion and Adhesion of CNTs by High-Energy Ball Milling
2.2. Spark Plasma Sintering of the Al-Based CNTs Nanocomposites
2.3. Scanning Electron Microscopy (SEM)
2.4. X-ray Diffraction (XRD)
2.5. Microindentation Hardness Tests
2.6. Electrical Conductivity Measurements
3. Results and Discussion
3.1. Cross-Sectional Morphology and EDS Elemental Mapping Analysis
3.2. Densification and Crystallite Size
3.3. Hardness Tests
3.4. Electrical Conductivity Tests
4. Conclusions
- (a)
- Al-based nanocomposites reinforced with unmodified CNTs and consolidated via SPS are excellent candidates to manufacture materials with superior hardness and electrical conductivity properties.
- (b)
- A mechanical improvement of hardness properties is obtained in thermally treated samples M1-M3 when the CNT clusters are located in the grain boundaries. This enhancement in hardness properties is attributed to the homogenous dispersion of the CNT reinforcement.
- (c)
- The electrical conductivity measurements show that by adding 2 wt% of MWCNTs into the aluminum matrix, the electrical conductivity of the SPS samples is increased about 3%, which is attributed to the location of the MWCNTs clusters in the grain boundaries acting as fillers and positively contributing with the electrical percolation threshold. Finally, this research sets the experimental conditions to process Al-based nanocomposites with the aim of using them in electrical applications as bulk materials.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mavhungu, S.T.; Akinlabi, E.T.; Onitiri, M.A.; Varachia, F.M. Aluminum Matrix Composites for Industrial Use: Advances and Trends. Procedia Manuf. 2017, 7, 178–182. [Google Scholar] [CrossRef]
- Kumar Sharma, A.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R.; Pinca-Bretotean, C. A study of advancement in application opportunities of aluminum metal matrix composites. Mater. Today Proc. 2020, 26, 2419–2424. [Google Scholar] [CrossRef]
- Sajeeb Rahiman, A.H.; Robinson Smart, D.S. Aluminium Carbon Nanotube Composites—A Review on Latest Approaches. In Lecture Notes on Multidisciplinary Industrial Engineering; Antony, K., Davim, J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 387–393. [Google Scholar]
- Shin, S.E.; Choi, H.J.; Hwang, J.Y.; Bae, D.H. Strengthening behavior of carbon/metal nanocomposites. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aborkin, A.; Khorkov, K.; Prusov, E.; Ob’edkov, A.; Kremlev, K.; Perezhogin, I.; Alymov, M. Effect of increasing the strength of aluminum matrix nanocomposites reinforced with microadditions of multiwalled carbon nanotubes coated with TiC nanoparticles. Nanomaterials 2019, 9, 1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, S.M.A.K.; Chen, D.L. Carbon Nanotube-Reinforced Aluminum Matrix Composites. Adv. Eng. Mater. 2020, 22, 1–26. [Google Scholar] [CrossRef]
- Ajayan, P.M.; Ebbesen, T.W. Nanometre-size tubes of carbon. Rep. Prog. Phys. 1997, 60, 1025–1062. [Google Scholar] [CrossRef]
- Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Veillère, A.; Kurita, H.; Kawasaki, A.; Lu, Y.; Heintz, J.M.; Silvain, J.F. Aluminum/Carbon Composites Materials Fabricated by the Powder Metallurgy Process. Materials 2019, 12, 4030. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Takamichi, M.; Kawasaki, A.; Leparoux, M. Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater. Chem. Phys. 2013, 138, 787–793. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhao, K.; Xiao, B.L.; Wang, W.G.; Ma, Z.Y. Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater. Des. 2016, 97, 424–430. [Google Scholar] [CrossRef]
- Fan, G.; Jiang, Y.; Tan, Z.; Guo, Q.; Xiong, D.B.; Su, Y.; Lin, R.; Hu, L.; Li, Z.; Zhang, D. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon 2018, 130, 333–339. [Google Scholar] [CrossRef]
- Kumar, A.; Banerjee, U.; Chowrasia, M.K.; Shekhar, H.; Banerjee, M.K. Effect of MWCNT Content on the Structure and Properties of Spark Plasma-Sintered Iron-MWCNT Composites Synthesized by High-Energy Ball Milling. J. Mater. Eng. Perform. 2019, 28, 2983–3000. [Google Scholar] [CrossRef]
- Pérez-Bustamante, R.; Gómez-Esparza, C.D.; Estrada-Guel, I.; Miki-Yoshida, M.; Licea-Jiménez, L.; Pérez-García, S.A.; Martínez-Sánchez, R. Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 2009, 502, 159–163. [Google Scholar] [CrossRef]
- Liao, J.; Tan, M.J. Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technol. 2011, 208, 42–48. [Google Scholar] [CrossRef]
- Esawi, A.; Morsi, K. Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Part A Appl. Sci. Manuf. 2007, 38, 646–650. [Google Scholar] [CrossRef]
- Omori, M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 2000, 287, 183–188. [Google Scholar] [CrossRef]
- Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int. J. Adv. Manuf. Technol. 2019, 100, 1563–1573. [Google Scholar] [CrossRef]
- Singh, L.K.; Bhadauria, A.; Oraon, A.; Laha, T. Spark plasma sintered Al-0.5 wt% MWCNT nanocomposite: Effect of sintering pressure on the densification behavior and multi-scale mechanical properties. Diam. Relat. Mater. 2019, 91, 144–155. [Google Scholar] [CrossRef]
- Kwon, H.; Park, D.H.; Silvain, J.F.; Kawasaki, A. Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos. Sci. Technol. 2010, 70, 546–550. [Google Scholar] [CrossRef]
- Housaer, F.; Beclin, F.; Touzin, M.; Tingaud, D.; Legris, A.; Addad, A. Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater. Charact. 2015, 110, 94–101. [Google Scholar] [CrossRef]
- Al-Aqeeli, N. Processing of CNTs reinforced al-based nanocomposites using different consolidation techniques. J. Nanomater. 2013, 2013, 14–20. [Google Scholar] [CrossRef]
- Singh, L.K.; Bhadauria, A.; Laha, T. Al-MWCNT nanocomposite synthesized via spark plasma sintering: Effect of powder milling and reinforcement addition on sintering kinetics and mechanical properties. J. Mater. Res. Technol. 2019, 8, 503–512. [Google Scholar] [CrossRef]
- Awotunde, M.A.; Adegbenjo, A.O.; Obadele, B.A.; Okoro, M.; Shongwe, B.M.; Olubambi, P.A. Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. J. Mater. Res. Technol. 2019, 8, 2432–2449. [Google Scholar] [CrossRef]
- Singh, L.K.; Bhadauria, A.; Jana, S.; Laha, T. Effect of Sintering Temperature and Heating Rate on Crystallite Size, Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering. Acta Metall. Sin. (Engl. Lett.) 2018, 31, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J. Mater. Sci. 2019, 54, 14064–14073. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, J.R.; Broughton, W.H.; Kutzak, A.R. The determination of yield strength from hardness measurements. Metall. Trans. 1971, 2, 1979–1983. [Google Scholar]
- Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int. J. Adv. Manuf. Technol. 2019, 101, 2275–2282. [Google Scholar] [CrossRef]
- Ujah, C.O.; Popoola, A.P.I.; Popoola, O.M.; Aigbodion, V.S. Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique. Int. J. Adv. Manuf. Technol. 2020, 106, 2961–2969. [Google Scholar] [CrossRef]
- William, D.; Callister, D.G.R. Fundamentals of Materials Science and Engineering: An Integrated Approach; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Zhbanov, A.I.; Pogorelov, E.G.; Chang, Y.C. Van der Waals interaction between two crossed carbon nanotubes. ACS Nano 2010, 4, 5937–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.T.Z.; Esawi, A.M.K.; Metwalli, S. Effect of carbon nanotube damage on the mechanical properties of aluminium-carbon nanotube composites. J. Alloys Compd. 2014, 607, 215–222. [Google Scholar] [CrossRef]
- Zare, Y.; Yop Rhee, K.; Park, S.J. Modeling the roles of carbon nanotubes and interphase dimensions in the conductivity of nanocomposites. Results Phys. 2019, 15, 102562. [Google Scholar] [CrossRef]
- Deng, F.; Zheng, Q.S. An analytical model of effective electrical conductivity of carbon nanotube composites. Appl. Phys. Lett. 2008, 92, 071902. [Google Scholar] [CrossRef]
Sample | Description | Sample | Description |
---|---|---|---|
S1 | Al + SWCNTs at 0.5 wt% | M1 | Al + MWCNTs at 0.5 wt% |
S2 | Al + SWCNTs at 1 wt% | M2 | Al + MWCNTs at 1 wt% |
S3 | Al + SWCNTs at 2 wt% | M3 | Al + MWCNTs at 2 wt% |
Sample | Description | Crystallite Size (nm) | Relative Density (%) |
---|---|---|---|
S1 | Al + SWCNTs at 0.5 wt% | 110 | 94.3 |
S2 | Al + SWCNTs at 1 wt% | 227 | 94.8 |
S3 | Al + SWCNTs at 2 wt% | 114 | 92.6 |
M1 | Al + MWCNTs at 0.5 wt% | 63 | 96.2 |
M2 | Al + MWCNTs at 1 wt% | 187 | 92.8 |
M3 | Al + MWCNTs at 2 wt% | 71 | 92.3 |
Sample | Hardness Vickers (MPa) | Tensile Strength (MPa) | Yield Strength (MPa) |
---|---|---|---|
S1 | 770.3 ± 13.1 | 261.3 ± 4.45 | 162.0 ± 2.76 |
S2 | 859.9 ± 12.8 (↑ 11%) | 291.7 ± 4.34 (↑11%) | 180.8 ± 2.69 (↑ 11%) |
S3 | 866.4 ± 17.5 (↑11%) | 293.9 ± 5.96 (↑11%) | 182.2 ± 3.69 (↑ 11%) |
M1 | 866.6 ± 1.73 | 294.0 ± 5.77 | 182.2 ± 3.58 |
M2 | 1003.0 ± 55.2 (↑ 15%) | 340.2 ± 18.0 (↑ 15%) | 210.9 ± 11.2 (↑ 15%) |
M3 | 1026.8 ± 38.9 (↑ 18%) | 348.3 ± 13.2 (↑ 18%) | 215.9 ± 8.19 (↑ 18%) |
Sample | Conductivity (S/m) | IACS (%) | Sample | Conductivity (S/m) | IACS (%) |
---|---|---|---|---|---|
S1 | 1.98 × 107 | 34.2 | M1 | 2.61 × 107 | 45.1 |
S2 | 1.54 × 107 | 26.7 (↓22%) | M2 | 2.00 × 107 | 34.6 (↓23%) |
S3 | 1.79 × 107 | 30.9 (↓9.6%) | M3 | 2.94 × 107 | 50.7 (↑12%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulloa-Castillo, N.A.; Martínez-Romero, O.; Hernandez-Maya, R.; Segura-Cárdenas, E.; Elías-Zúñiga, A. Spark Plasma Sintering of Aluminum-Based Powders Reinforced with Carbon Nanotubes: Investigation of Electrical Conductivity and Hardness Properties. Materials 2021, 14, 373. https://doi.org/10.3390/ma14020373
Ulloa-Castillo NA, Martínez-Romero O, Hernandez-Maya R, Segura-Cárdenas E, Elías-Zúñiga A. Spark Plasma Sintering of Aluminum-Based Powders Reinforced with Carbon Nanotubes: Investigation of Electrical Conductivity and Hardness Properties. Materials. 2021; 14(2):373. https://doi.org/10.3390/ma14020373
Chicago/Turabian StyleUlloa-Castillo, Nicolás A., Oscar Martínez-Romero, Roberto Hernandez-Maya, Emmanuel Segura-Cárdenas, and Alex Elías-Zúñiga. 2021. "Spark Plasma Sintering of Aluminum-Based Powders Reinforced with Carbon Nanotubes: Investigation of Electrical Conductivity and Hardness Properties" Materials 14, no. 2: 373. https://doi.org/10.3390/ma14020373
APA StyleUlloa-Castillo, N. A., Martínez-Romero, O., Hernandez-Maya, R., Segura-Cárdenas, E., & Elías-Zúñiga, A. (2021). Spark Plasma Sintering of Aluminum-Based Powders Reinforced with Carbon Nanotubes: Investigation of Electrical Conductivity and Hardness Properties. Materials, 14(2), 373. https://doi.org/10.3390/ma14020373