Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- 37.5Bi2O3–62.5B2O3
- (ii)
- 38Bi2O3–60B2O3–2Al2O3
- (iii)
- 40Bi2O3–60B2O3
- (iv)
- 40Bi2O3–59B2O3–1Al2O3
- (v)
- 40Bi2O3–59B2O3–1Y2O3
- (vi)
- 40Bi2O3–59B2O3–1Nd2O3
- (vii)
- 40Bi2O3–59B2O3–1Sm2O3
- (viii)
- 40Bi2O3–59B2O3–1Eu2O3
2.1. Nuclear Radiation Shielding Parameters
2.2. Python Multilayered (Py-MLBUF) Online Platform
3. Results and Discussion
4. Conclusions
- (i)
- The µm values of 64.49 cm2/g, 64.59 cm2/g, 65.79 cm2/g, 65.70 cm2/g, 65.87 cm2/g, 65.49 cm2/g, 65.52 cm2/g, 69.48 cm2/g were recorded for Sample 1, Sample 2, Sample 3, Sample 4, Sample 5, Sample 6, Sample 7 and Sample 8 glasses at 0.015 MeV, respectively. Generally, the µm values obeyed the trend: (µm)8 > (µm)7 > (µm)6 > (µm) 5 > (µm) 4 > (µm)3 > (µm) 2 > (µm) 1
- (ii)
- The T1/2 values of 2.5193 cm, 2.4923 cm, 2.3943 cm, 2.4251 cm, 2.4004 cm, 2.3857 cm, 2.3934 cm, 2.3831 cm were recorded Sample 1, Sample 2, Sample 3, Sample 4, Sample 5, Sample 6, Sample 7 and Sample 8 glasses at 2 MeV, respectively.
- (iii)
- The findings indicated that Sample 8 had the lowest values of MFP at the photon energies investigated.
- (iv)
- The findings indicate that Sample 8 has the highest Zeff values at all energy levels examined.
- (v)
- Sample 8 was reported as having the maximum EBF and EABF values, while the minimum values were reported for the Sample 1.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowda, S.; Krishnaveni, S.; Yashoda, T.; Umesh, T.K.; Gowda, R. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana 2004, 63, 529–541. [Google Scholar] [CrossRef]
- Elmahroug, Y.; Tellili, B.; Souga, C. Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 2015, 75, 268–274. [Google Scholar] [CrossRef]
- Akkurt, I.; Tekin, H.O. Radiological Parameters for Bismuth Oxide Glasses Using Phy-X/PSD Software. Emerg. Mater. Res. 2020, 9, 1020–1027. [Google Scholar] [CrossRef]
- Ogunsola, A.; Reggiani, U.; Sandrolini, L. Modelling Shielding Properties of Concrete. In Proceedings of the 17th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 27 February–3 March 2006; pp. 34–37. [Google Scholar] [CrossRef]
- Issa, S.A.M. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. 2016, 120, 33–37. [Google Scholar] [CrossRef]
- Aygün, B. High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 2020, 52, 647–653. [Google Scholar] [CrossRef]
- William, O.-M.; John, J.F.; Danso, K.A. Assessment of radiation shielding properties of polyester steel composite using MCNP5. Int. J. Sci. Technol. 2012, 2, 455–461. [Google Scholar]
- Alshahrani, B.; Olarinoye, I.O.; Mutuwong, C.; Sriwunkum, C.; Yakout, H.A.; Tekin, H.O.; Al-Buriahi, M.S. Amorphous alloys with high Fe content for radiation shielding applications. Radiat. Phys. Chem. 2021, 183, 109386. [Google Scholar] [CrossRef]
- Tekin, H.O.; Kilicoglu, O. The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness of Pd/Mn binary alloys. Journal of Alloys and Compounds, 28 September 2019; 152484. [Google Scholar] [CrossRef]
- Tellili, B.; Elmahroug, Y.; Souga, C. Investigation on radiation shielding parameters of cerrobend alloys. Nucl. Eng. Technol. 2017, 49, 1758–1771. [Google Scholar] [CrossRef]
- Levet, A.; Kavaz, E.; Özdemir, Y. An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 2020, 819, 152946. [Google Scholar] [CrossRef]
- Kilic, G.; Ilik, E.; Issa, S.A.; Issa, B.; Al-Buriahi, M.S.; Issever, U.G.; Zakaly, H.M.H.; Tekin, H.O. Ytterbium (III) oxide reinforced novel TeO2–B2O3–V2O5 glass system: Synthesis and optical, structural, physical and thermal properties. Ceram. Int. 2021, 47, 18517–18531. [Google Scholar] [CrossRef]
- Kilic, G. Role of Nd3+ ions in TeO2–V2O5–(B2O3/Nd2O3) glasses: Structural, optical, and thermal characterization. J. Mater. Sci. Mater. Electron. 2020, 31, 12892–12902. [Google Scholar] [CrossRef]
- Tekin, H.O.; Alomairy, S.; Al-Buriahi, M.S.; Rammah, Y.S. Linear/nonlinear optical parameters along with photon attenuation effectiveness of Dy3+ ions doped zinc-aluminoborosilicate glasses. Phys. Scr. 2021, 96, 065704. [Google Scholar] [CrossRef]
- Kilic, G.; Issa, S.A.M.; Ilik, E.; Kilicoglu, O.; Tekin, H.O. A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties. Ceram. Int. 2021, 47, 2572–2583. [Google Scholar] [CrossRef]
- Kilic, G.; Issa, S.A.M.; Ilik, E.; Kilicoglu, O.; Issever, U.G.; El-Mallawany, R.; Issa, B.; Tekin, H.O. Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses. Ceram. Int. 2021, 47, 6154–6168. [Google Scholar] [CrossRef]
- Tekin, H.O.; Issa, S.A.M.; Kilic, G.; Zakaly, H.M.H.; Tarhan, N.; Sidek, H.A.A.; Matori, K.A.; Zaid, M.H.M. A Systematical Characterization of TeO2–V2O5 Glass System Using Boron (III) Oxide and Neodymium (III) Oxide Substitution: Resistance Behaviors against Ionizing Radiation. Appl. Sci. 2021, 11, 3035. [Google Scholar] [CrossRef]
- Oo, H.M.; Mohamed-Kamari, H.; Wan-Yusoff, W.M.D. Optical Properties of Bismuth Tellurite Based Glass. Int. J. Mol. Sci. 2012, 13, 4623–4631. [Google Scholar] [CrossRef] [Green Version]
- Mallur, S.B.; Czarnecki, T.; Adhikari, A.; Babu, P.K. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses. Mater. Res. Bull. 2015, 68, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Issa, S.A.M.; Rashad, M.; Zakaly, H.M.H. Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: Evaluation of optical, mechanical, and gamma shielding parameters. J. Mater. Sci. Mater. Electron. 2020, 31, 22039–22056. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Ali, A.M.; Tekin, H.O.; Saddeek, Y.B.; Al-Hajry, A.; Algarni, H.; Susoy, G. Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nucl. Eng. Technol. 2020, 52, 1297–1303. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K.J.; Thakur, S.; Singh, P.; Bajwa, B.S. Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 367–377. [Google Scholar] [CrossRef]
- Santos, D.R.S.; Santos, C.N.; de Camargo, A.S.S.; Silva, W.F.; Santos, W.Q.; Vermelho, M.V.D.; Astrath, N.G.C.; Malacarne, L.C.; Li, M.S.; Hernandes, A.C.; et al. Thermo-optical characteristics and concentration quenching effects in Nd3+doped yttrium calcium borate glasses. J. Chem. Phys. 2011, 134, 124503. [Google Scholar] [CrossRef] [Green Version]
- Guntu, R.K. Luminescence and dielectric properties of Ni2+ ions added to calcio yttria borophosphate glasses for optoelectronic uses. J. Lumin. 2019, 209, 258–266. [Google Scholar] [CrossRef]
- Kaewnuam, E.; Kim, H.J.; Jayasankar, C.K.; Chanthima, N.; Kaewkhao, J. The photoluminescence, optical and physical properties of Sm3+-doped lithium yttrium borate glasses. Phys. Chem. Glasses—Eur. J. Glass Sci. Technol. Part B 2016, 57, 85–89. [Google Scholar] [CrossRef]
- Popov, A.I.; Lushchik, A.; Shablonin, E.; Vasil’chenko, E.; Kotomin, E.A.; Moskina, A.M.; Kuzovkov, V.N. Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 433, 93–97. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Kuzovkov, V.N.; Popov, A.I.; Vila, R. Kinetics of F center annealing and colloid formation in Al2O3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 374, 107–110. [Google Scholar] [CrossRef]
- Tucker, D.S.; Zocco, T.; Kise, C.D.; Kennedy, J.C. Effects of neutron-irradiation on MgAl2O4 and Al203. J. Nucl. Mater. 1986, 143, 401–404. [Google Scholar] [CrossRef]
- Mann, K.S.; Mann, S.S. Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Ann. Nucl. Energy 2021, 150, 107845. [Google Scholar] [CrossRef]
- Bajaj, A.; Khanna, A.; Kulkarni, N.K.; Aggarwal, S.K. Effects of Doping Trivalent Ions in Bismuth Borate Glasses. J. Am. Ceram. Soc. 2009, 92, 1036–1041. [Google Scholar] [CrossRef]
- Mostafa, A.M.A.; Zakaly, H.M.; Al-Ghamdi, S.A.; Issa, S.A.; Al-Zaibani, M.; Ramadan, R.M.; El Agammy, E.F. PbO–Sb2O3–B2O3–CuO glassy system: Evaluation of optical, gamma and neutron shielding properties. Mater. Chem. Phys. 2021, 258, 123937. [Google Scholar] [CrossRef]
- Issa, S.A.M.; Zakaly, H.M.H.; Pyshkina, M.; Mostafa, M.Y.A.; Rashad, M.; Soliman, T.S. Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat. Phys. Chem. 2020, 180, 109281. [Google Scholar] [CrossRef]
- Tekin, H.O.; Sayyed, M.I.; Altunsoy, E.E.; Manici, T. Shielding properties and effects of WO3 and PbO on mass attenuation coefficients by using MCNPX code. Dig. J. Nanomater. Biostruct. 2017, 12, 861–867. [Google Scholar]
- Tekin, H.O.; Singh, V.P.; Manici, T. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. 2017, 12, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Issa, S.A.M.; Ahmed, M.R.; Saddeek, Y.B.; Zaid, M.H.M.; Sayed, M.; Somaily, H.H.; Tekin, H.O.; Sidek, H.A.A.; Matori, K.A.; et al. Promising applicable heterometallic Al2O3/PbO2 nanoparticles in shielding properties. J. Mater. Res. Technol. 2020, 9, 13956–13962. [Google Scholar] [CrossRef]
- Henaish, A.M.A.; Mostafa, M.; Salem, B.I.; Zakaly, H.M.H.; Issa, S.A.M.; Weinstein, I.A.; Hemeda, O.M. Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J. Mater. Sci. Mater. Electron. 2020, 22, 20210–20222. [Google Scholar] [CrossRef]
- El-Denglawey, A.; Zakaly, H.M.H.; Alshammari, K.; Issa, S.A.M.; Tekin, H.O.; AbuShanab, W.S.; Saddeek, Y.B. Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration. Results Phys. 2021, 21, 103839. [Google Scholar] [CrossRef]
- Tekin, H.O.; Bilal, G.; Zakaly, H.M.H.; Kilic, G.; Issa, S.A.M.; Ahmed, E.M.; Rammah, Y.S.; Ene, A. Newly developed vanadium-based glasses and their potential for nuclear radiation shielding aims: A monte carlo study on gamma ray attenuation parameters. Materials 2021, 14, 3897. [Google Scholar] [CrossRef]
- Zakaly, H.M.; Ashry, A.; El-Taher, A.; Abbady, A.G.E.; Allam, E.A.; El-Sharkawy, R.M.; Mahmoud, M.E. Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: In-depth simulation study. Radiat. Phys. Chem. 2021, 188, 109667. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Kumar, A.; Tekin, H.O.; Issa, S.A.M.; Al-Buriahi, M.S.; Dong, M.G.; Lee, D.; Yoon, J.; Park, T. In-depth survey of nuclear radiation attenuation efficacies for high density bismuth lead borate glass system. Results Phys. 2021, 23, 104030. [Google Scholar] [CrossRef]
- Saudi, H.A.; Tekin, H.O.; Zakaly, H.M.H.; Issa, S.A.M.; Susoy, G.; Zhukovsky, M. The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: Experimental and numerical investigation. Opt. Mater. 2021, 114, 110948. [Google Scholar] [CrossRef]
- Zakaly, H.M.H.; Rashad, M.; Tekin, H.O.; Saudi, H.A.; Issa, S.A.M.; Henaish, A.M.A. Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental and simulation study. Opt. Mater. 2021, 114, 110942. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Hegazy, H.H.; Alrashedi, F.; Olarinoye, I.O.; Algarni, H.; Tekin, H.O.; Saudi, H.A. Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram. Int. 2021, 47, 5951–5958. [Google Scholar] [CrossRef]
- Tekin, H.O.; Kassab, L.R.P.; Issa, S.A.M.; Bordon, C.D.d.; Al-Buriahi, M.S.; Delboni, F.d.P.; Kilic, G.; Magalhaes, E.S. Structural and physical characterization study on synthesized tellurite (TeO2) andgermanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS. Opt. Mater. 2020, 110, 110533. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, T.J.; Hodson, H.P.; Jackson, J.D. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater. Sci. Eng. A 2004, 367, 123–131. [Google Scholar] [CrossRef]
- Tekin, H.O.; Issa, S.A.M.; Mahmoud, K.A.; El-Agawany, F.I.; Rammah, Y.S.; Susoy, G.; Al-Buriahi, M.S.; Abuzaid, M.M.; Akkurt, I. Nuclear Radiation Shielding Competences of Barium (Ba) Reinforced Borosilicate Glasses. Emerg. Mater. Res. 2020, 9, 1131–1144. [Google Scholar] [CrossRef]
Sample Code | B | O | Bi | Al | Y | Nd | Sm | Eu | Density (g/cm3) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.061915 | 0.219923 | 0.718162 | - | - | - | - | - | 6.006 |
2 | 0.058731 | 0.217306 | 0.719077 | 0.004886 | - | - | - | - | 6.07 |
3 | 0.056857 | 0.210372 | 0.732771 | - | - | - | - | - | 6.313 |
4 | 0.05583 | 0.210074 | 0.731734 | 0.002362 | - | - | - | - | 6.233 |
5 | 0.055529 | 0.208942 | 0.727789 | - | 0.007741 | - | - | - | 6.301 |
6 | 0.055263 | 0.20794 | 0.7243 | - | - | 0.012498 | - | - | 6.341 |
7 | 0.055233 | 0.20783 | 0.723916 | - | - | - | 0.013021 | - | 6.321 |
8 | 0.05523 | 0.20780 | 0.72382 | - | - | - | - | 0.00658 | 6.328 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ALMisned, G.; Tekin, H.O.; Bilal, G.; Ene, A.; Kilic, G.; Issa, S.A.M.; Algethami, M.; Zakaly, H.M.H. Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu. Materials 2021, 14, 5894. https://doi.org/10.3390/ma14195894
ALMisned G, Tekin HO, Bilal G, Ene A, Kilic G, Issa SAM, Algethami M, Zakaly HMH. Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu. Materials. 2021; 14(19):5894. https://doi.org/10.3390/ma14195894
Chicago/Turabian StyleALMisned, Ghada, Huseyin O. Tekin, Ghaida Bilal, Antoaneta Ene, Gokhan Kilic, Shams A. M. Issa, Merfat Algethami, and Hesham M. H. Zakaly. 2021. "Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu" Materials 14, no. 19: 5894. https://doi.org/10.3390/ma14195894
APA StyleALMisned, G., Tekin, H. O., Bilal, G., Ene, A., Kilic, G., Issa, S. A. M., Algethami, M., & Zakaly, H. M. H. (2021). Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu. Materials, 14(19), 5894. https://doi.org/10.3390/ma14195894