Solidification/Stabilization of Arsenic-Containing Tailings by Steel Slag-Based Binders with High Efficiency and Low Carbon Footprint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of SST
2.3. Leaching Tests
2.3.1. Extraction Tests
2.3.2. Leaching Environmental Assessment Framework Tests
Leaching Tests as per Method 1313
Leaching Tests as per Method 1316
Leaching Tests as per Method 1315
3. Results
3.1. Extraction Tests Results
3.2. Results of pH-Dependent LSP
3.3. Results of L/S-Dependent LSP
3.4. Results of Mass Transfer Rates
4. Discussion
5. Conclusions
- The extraction test results showed that the As curing rate for SST and PST samples were in the range of 96.80–98.89% and 99.52–99.2%, respectively.
- The LSP limits of AT, T3-90d, and PST-90d were controlled by solubility, and the highest concentrations over the investigated pH and L/S range were 7.56 (at pH 4), 0.34 (at pH 13), and 0.33 (at pH 9) mg/L, respectively.
- The As leaching mechanism of monolithic SST (T3-90d) was controlled by diffusion, and the mean Dobs of T3-90d of 9.35 × 10−15 cm2/s was higher than that of PST-90d (1.55 × 10−16 cm2/s).
- As leaching of SST (T3-90d) and PST (PST-90d) was controlled by the equilibrium between Ca–As co-precipitation and dissolution and influenced by the Ca equilibrium concentrations of Ca(OH)2 when the leachate pH was in the range of 12–13. Furthermore, As leaching was strongly correlated to Fe-ion leaching when the leachate pH was less than 10.5.
- The utilization of SSB in S/S process has great potential in carbon reduction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Jia, F.; Yue, Q.; Ma, D.; Pan, H.; Wu, M. Decoupling of nonferrous metal consumption from economic growth in China. Environ. Dev. Sustain. 2016, 18, 221–235. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Annual Report on Environmental Statistics. 2017. Available online: http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/ (accessed on 8 August 2021).
- Cheng, X.; Qi, W.; Huang, Q.; Zhao, X.; Fang, R.; Xu, J. Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China. IOP Conf. Series Earth Environ. Sci. 2016, 44, 022008. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, S.; Wang, Q.; Ni, W.; Li, K.; Fu, P.; Hu, W.; Li, Z. Feasibility of using fly ash–slag-based binder for mine backfilling and its associated leaching risks. J. Hazard. Mater. 2020, 400, 123191. [Google Scholar] [CrossRef] [PubMed]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Voosen, P. Earth’s climate destiny finally seen more clearly. Science 2020, 369, 354–355. [Google Scholar] [CrossRef]
- Wang, L.; Yu, K.; Li, J.-S.; Tsang, D.C.; Poon, C.S.; Yoo, J.-C.; Baek, K.; Ding, S.; Hou, D.; Dai, J.-G. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem. Eng. J. 2018, 351, 418–427. [Google Scholar] [CrossRef]
- Guo, B.; Tan, Y.; Wang, L.; Chen, L.; Wu, Z.; Sasaki, K.; Mechtcherine, V.; Tsang, D.C. High-efficiency and low-carbon remediation of zinc contaminated sludge by magnesium oxysulfate cement. J. Hazard. Mater. 2020, 408, 124486. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Guo, B.; Tsang, D.C.; Huang, L.; Ok, Y.S.; Mechtcherine, V. Red mud-enhanced magnesium phosphate cement for remediation of Pb and As contaminated soil. J. Hazard. Mater. 2020, 400, 123317. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Wang, F.; Wang, L.; Liu, J.; Hashimoto, Y.; Hosomi, M. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation. Sci. Total. Environ. 2021, 768, 144521. [Google Scholar] [CrossRef]
- Wang, L.; Cho, D.-W.; Tsang, D.C.; Cao, X.; Hou, D.; Shen, Z.; Alessi, D.; Ok, Y.S.; Poon, C.S. Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environ. Int. 2019, 126, 336–345. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Cho, D.-W.; Tsang, D.C.; Yang, J.; Hou, D.; Baek, K.; Kua, H.W.; Poon, C.S. Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. J. Hazard. Mater. 2018, 365, 695–706. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review. J. Clean. Prod. 2018, 213, 42–58. [Google Scholar] [CrossRef]
- Xiao, B.; Wen, Z.; Miao, S.; Gao, Q. Utilization of steel slag for cemented tailings backfill: Hydration, strength, pore structure, and cost analysis. Case Stud. Constr. Mater. 2021, 15, e00621. [Google Scholar] [CrossRef]
- Feng, Y.-S.; Zhou, S.-J.; Xia, W.-Y.; Du, Y.-J. Solidify/stabilise a heavy metal-contaminated soil using a novel steel slag-based binder. Environ. Geotech. 2020, 1–16. [Google Scholar] [CrossRef]
- Nejad, Z.D.; Rezania, S.; Jung, M.C.; Al-Ghamdi, A.A.; Mustafa, A.E.-Z.M.; Elshikh, M.S. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. Chemosphere 2021, 271, 129538. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Jyoti; Vashistha, P. Development of newer composite cement through mechano-chemical activation of steel slag. Constr. Build. Mater. 2020, 268, 121147. [Google Scholar] [CrossRef]
- Gao, W.; Ni, W.; Zhang, Y.; Li, Y.; Shi, T.; Li, Z. Investigation into the semi-dynamic leaching characteristics of arsenic and antimony from solidified/stabilized tailings using metallurgical slag-based binders. J. Hazard. Mater. 2019, 381, 120992. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, F. Comprehensive Utilization and Development Prospect of Steel Slag Resources. Mater. Rep. 2020, 34, 1319–1322+1333. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CLDB2020S2065&DbName=CJFQ2020 (accessed on 8 August 2021).
- Jiang, Y.; Ling, T.-C.; Shi, C.; Pan, S.-Y. Characteristics of steel slags and their use in cement and concrete—A review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Liao, Y.; Jiang, G.; Wang, K.; Al Qunaynah, S.; Yuan, W. Effect of steel slag on the hydration and strength development of calcium sulfoaluminate cement. Constr. Build. Mater. 2020, 265, 120301. [Google Scholar] [CrossRef]
- Li, Y.; Ni, W.; Gao, W.; Zhang, Y.; Yan, Q.; Zhang, S. Corrosion evaluation of steel slag based on a leaching solution test. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 41, 790–801. [Google Scholar] [CrossRef]
- Wang, L.; Geddes, D.; Walkley, B.; Provis, J.L.; Mechtcherine, V.; Tsang, D.C. The role of zinc in metakaolin-based geopolymers. Cem. Concr. Res. 2020, 136, 106194. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B.; Ni, W.; Mu, X. Synergies in early hydration reaction of slag-steel slag-gypsum system. J. Northeast. Univ. 2020, 41, 6. [Google Scholar] [CrossRef]
- Lewin, K.; Bradshaw, K.; Blackley, N.C.; Turrell, J.; Hennings, S.M.; Flaving, R.J. Leaching Tests for Assessment of Contaminated Land: Interim NRA Guidance; National Rivers Authority R&D Note 301; National Rivers Authority: Bristol, UK, 1994. [Google Scholar]
- SEPA. Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method; SEPA: Beijing, China, 2007. [Google Scholar]
- SEPA. Solid Waste-Extraction procedure for leaching toxicity-Horizontal Vibration Method; SEPA: Beijing, China, 2010. [Google Scholar]
- ASTM. Standard Test Method for Accelerated Leach Test for Diffusive Releases from Solidified Waste and a Computer Program to Model Diffusive, Fractional Leaching from Cylindrical Waste Forms; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Agency U.S.E.P. Leaching Environmental Assessment Framework (LEAF) Methods and Guidance. 2017. Available online: https://www.epa.gov/hw-sw846/leaching-environmental-assessment-framework-leaf-methods-and-guidance (accessed on 8 August 2021).
- Zhao, H.; Yu, Q.; Wei, J.; Li, J.; Gong, C. Influence on composition and morphology of mineral of steel slag and cementitious property. J. Wuhan Univ. Technol. 2010, 32, 22–26+38. [Google Scholar] [CrossRef]
- Jian, L.; Huang, Z.; Liu, Y.; Yang, Z.; Hu, T. Comparative analysis of arsenic speciation in sediments of the Diaojiang River using X-ray absorption near edge structure spectra and sequential chemical extraction. Res. Environ. Sci. 2012, 25, 7–820. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z.; Zhang, S.; Zhang, Y.; Fu, P.; Yang, H.; Ni, W. Enhancing Arsenic Solidification/Stabilisation Efficiency of Metallurgical Slag-Based Green Mining Fill and Its Structure Analysis. Metals 2021, 11, 1389. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Ni, W.; Yan, Q.; Gao, W.; Li, Y. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials. Chemosphere 2019, 223, 117–123. [Google Scholar] [CrossRef]
- de Groot, G.J.; van der Sloot, H.A. Determination of leaching characteristics of waste materials leading to environmental product certification. In Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes; Gilliam, T., Wiles, C., Eds.; ASTM International: West Conshohocken, PA, USA, 1992; Volume 2, Available online: https://doi.org/10.1520/STP19548S (accessed on 8 August 2021). [CrossRef]
- Carlito, B.T.; Toshifumi, I.; Mylah, V.T.; Ilhwan, P.; Einstine, M.O.; Mayumi, I.; Naoki, H. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total. Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef]
- Almeida, C.C.; Fontes, M.P.F.; Dias, A.C.; Pereira, T.T.C.; Ker, J.C. Adsorption and desorption of arsenic and its immobilization in soils. Sci. Agricol. 2021, 78, 11. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009, 29, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhu, C.; Wang, Q.; Yang, G. Mechanisms for As(OH)3 and H3AsO4 adsorption at anhydrous and hydrated surfaces of gibbsite and possibility for anionic As(III) and As(V) formation. Appl. Surf. Sci. 2020, 525, 11. [Google Scholar] [CrossRef]
- Tiberg, C.; Sjstedt, C.; Eriksson, A.K.; Klysubun, W.; Gustafsson, J.P. Phosphate competition with arsenate on poorly crystalline iron and aluminum (hydr)oxide mixtures. Chemosphere 2020, 255, 8. [Google Scholar] [CrossRef]
- Deng, G.; He, Y.; Lu, L.; Hu, S. Evolution of aluminate hydrate phases in fly ash-cement system under the sulfate conditions. Constr. Build. Mater. 2020, 252, 11. [Google Scholar] [CrossRef]
- US EPA. Leaching Test Relationships, Laboratory-to-Field Comparisons and Recommendations for Leaching Evaluation using the Leaching Environmental Assessment Framework (LEAF); US EPA: Washington, DC, USA, 2014.
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- US EPA. Leaching Environmental Assesment Framwork (LEAF) How-To Guide; US EPA: Washington, DC, USA, 2017; p. 92.
- US EPA. Human and Ecological Risk Assessment of Coal Combustion Residuals; US EPA: Washington, DC, USA, 2014.
- Zhang, Y.; Gao, W.; Ni, W.; Zhang, S.; Li, Y.; Wang, K.; Huang, X.; Fu, P.; Hu, W. Influence of calcium hydroxide addition on arsenic leaching and solidification/stabilisation behaviour of metallurgical-slag-based green mining fill. J. Hazard. Mater. 2020, 390, 122161. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, G.; Johnson, A.; Gerven, T.V.; Vandecasteele, C. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review. Appl. Geochem. 2008, 23, 955–976. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, X.; Fan, Y. Volatilization characteristic and model study of harmful constituents in process of treatment of MSWI fly ash by PC kiln. Cement 2010, 2, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L. Instance analysis on application of alternative materials to reduce CO2 emissions from cement industry. New Build. Mater. 2017, 44, 97–99+118. [Google Scholar]
- Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 emissions from China’s cement industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Wei, J.; Geng, Y.; Shen, L.; Cen, K. Analysis of Chinese Cement Production and CO2 Emission. Environ. Sci. Technol. 2015, 38, 80–86. [Google Scholar] [CrossRef]
- Shen, J.; Qin, Z.; Shao, J.; Li, X. Application research of steel slag grinding process. Cement 2021, 1, 20–24. [Google Scholar] [CrossRef]
Notation | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | P2O5 | MgO | CaO | Na2O | K2O | SO3 | As2O3 | F | LOI | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AT | 53.23 | 0.12 | 5.07 | 1.65 | 0.7 | 0.1 | 1.17 | 25.49 | - | 1.38 | 1.12 | 0.18 | 6.05 | 10.61 | 7.64 |
SSP | 17.05 | 0.91 | 5.73 | 22.33 | 3.63 | 1.72 | 9.01 | 38.42 | 0.16 | 0.09 | - | - | - | 1.42 | 11.96 |
GGBFS | 33.32 | 0.85 | 15.43 | 1.01 | 0.52 | 0.05 | 10.78 | 36.89 | 0.49 | 0.38 | - | - | - | 0.12 | 11.78 |
FGDG | 2.03 | 0.04 | 0.78 | 0.48 | 0.03 | 0.06 | 1.04 | 30.01 | 0.06 | 0.15 | 44.97 | - | - | 22.07 | 7.68 |
Notation | Steel Slag-Based Binder (Mass Fraction/ wt.%) | B/T (w/w) | W/S (w/w) | WR/S (w/w) | Fluidity (mm) | UCS (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
SSP | GGBFS | FGDG | 3 d | 7 d | 28 d | 90 d | |||||
T-1 | 60 | 30 | 10 | 0.25 | 0.19 | 0.01 | 300 | 9.1 | 12.2 | 14.3 | 15.1 |
T-2 | 70 | 20 | 10 | 300 | 6.3 | 8.1 | 10.1 | 13.2 | |||
T-3 | 80 | 10 | 10 | 300 | 3.5 | 4.8 | 7.2 | 14.5 | |||
T-4 | 90 | 0 | 10 | 300 | 1.1 | 1.9 | 2.5 | 9.8 | |||
PST 1 | 100 | 300 | 12.5 | 18.2 | 24.1 | 26.2 |
Sample | Cumulative Release /(mg/m2) | Fitting Curve Equation | R2 | Slope | Mechanism | Mean Dobs /(cm2/s) | ||
---|---|---|---|---|---|---|---|---|
28 d | 63 d | 112 d | ||||||
T3-90d | 5.091 | 7.943 | 9.674 | logy = 0.48logx + 3.04 | 0.96 | 0.48 | diffusion | 9.35 × 10−15 |
PST-90d | 0.603 | 0.964 | 1.168 | logy = 0.47logx + 1.98 | 0.85 | 0.47 | diffusion | 1.55 × 10−16 |
As | Threshold Value 1 /(mg/L) | Total Content /(mg/kg-dry) | Method 1313 | Method 1316 | AR 2 | ARDAF 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Available Content /(mg/L) | pH for Available Content | Max Conc. Over pH Domain /(mg/L) | pH at Max Conc. | Limitation by Available Content or Solubility | Max. Conc. over L/S Range | L/S at Max. Conc. | |||||
AT | 0.01 | 2098 | 25.49 | 2 | 7.56 | 4 | Solubility | - | - | 756 | 75.6 |
T3-90d | 0.01 | 1376 | 10.96 | 2 | 0.34 | 13 | Solubility | 0.025 | 0.5 | 34 | 3.4 |
PST-90d | 0.01 | 1376 | 7.78 | 2 | 0.33 | 9 | Solubility | 0.004 | 1 | 33 | 3.3 |
pH | 13–12 | 12–10.5 | 10.5–9 | 9–7 | 7–5.5 | 5.5–4 | 4–2 | ||||||||
Element | MLC 1 | Trend | MLC 1 | Trend | MLC 1 | Trend | MLC 1 | Trend | MLC 1 | Trend | MLC 1 | Trend | MLC 1 | Trend | |
T3-90d | As | 0.203 | ↘ | 0.114 | ↗ | 0.169 | → | 0.187 | → | 0.224 | → | 0.373 | ↗ | 5.761 | ↗ |
Ca | 117 | ↗ | 709 | ↗ | 1695 | ↗ | 2679 | ↗ | 5211 | ↗ | 8250 | ↗ | 9799 | → | |
Si | 0.63 | → | 2.48 | ↗ | 4.258 | ↗ | 9.259 | ↗ | 53.12 | ↗ | 257.8 | ↗ | 1155 | ↗ | |
Al | 3.261 | → | 2.575 | ↘ | 1.573 | ↘ | 2.588 | ↗ | 94.56 | ↗ | 386.7 | ↗ | 1420 | ↗ | |
Fe | 0.795 | → | 0.642 | → | 0.701 | → | 1.106 | → | 162.5 | ↗ | 411.7 | ↗ | 684.1 | ↗ | |
PST-90d | As | 0.066 | ↘↗ | 0.059 | ↗ | 0.228 | → | 0.274 | → | 0.224 | → | 0.388 | ↗ | 3.800 | ↗ |
Ca | 723.5 | ↗ | 3052 | ↗ | 5794 | ↗ | 7435 | → | 9201 | ↗ | 13,152 | ↗ | 16,120 | → | |
Si | 0.55 | → | 5.66 | ↗ | 13.56 | ↗ | 22.21 | → | 30.55 | → | 96.28 | ↗ | 392.7 | ↗ | |
Al | 0.709 | → | 1.610 | ↗ | 1.989 | ↘ | 1.572 | → | 3.098 | ↗ | 353.1 | ↗ | 791.3 | → | |
Fe | 0.995 | → | 0.929 | → | 0.665 | → | 0.356 | → | 0.286 | → | 70.65 | ↗ | 275.5 | ↗ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Li, Z.; Zhang, S.; Zhang, Y.; Teng, G.; Li, X.; Ni, W. Solidification/Stabilization of Arsenic-Containing Tailings by Steel Slag-Based Binders with High Efficiency and Low Carbon Footprint. Materials 2021, 14, 5864. https://doi.org/10.3390/ma14195864
Gao W, Li Z, Zhang S, Zhang Y, Teng G, Li X, Ni W. Solidification/Stabilization of Arsenic-Containing Tailings by Steel Slag-Based Binders with High Efficiency and Low Carbon Footprint. Materials. 2021; 14(19):5864. https://doi.org/10.3390/ma14195864
Chicago/Turabian StyleGao, Wei, Zifu Li, Siqi Zhang, Yuying Zhang, Guoxiang Teng, Xiaoqi Li, and Wen Ni. 2021. "Solidification/Stabilization of Arsenic-Containing Tailings by Steel Slag-Based Binders with High Efficiency and Low Carbon Footprint" Materials 14, no. 19: 5864. https://doi.org/10.3390/ma14195864
APA StyleGao, W., Li, Z., Zhang, S., Zhang, Y., Teng, G., Li, X., & Ni, W. (2021). Solidification/Stabilization of Arsenic-Containing Tailings by Steel Slag-Based Binders with High Efficiency and Low Carbon Footprint. Materials, 14(19), 5864. https://doi.org/10.3390/ma14195864