2D Organic–Inorganic Hybrid Perovskite Quantum Well Materials and Their Dramatical X-ray Optoelectronic Properties
Abstract
:1. Introduction
2. Regulation of Out-of-Plane Oriented Growth
2.1. Nucleation Process
2.1.1. Solvent Engineering
2.1.2. Additive Engineering
2.1.3. Composition Engineering
2.2. Growth Process
2.2.1. Temperature
2.2.2. Vapor Pressure
2.3. Intermolecular Forces of Organic Spacers
3. Oriented Growth Mechanism
4. X-ray Optoelectronic Properties
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yan, J.; Qiu, W.; Wu, G.; Heremans, P.; Chen, H. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A 2018, 6, 11063–11077. [Google Scholar] [CrossRef]
- Zheng, Y.; Niu, T.; Ran, X.; Oiu, J.; Li, B.; Xia, Y.; Chen, Y.; Huang, W. Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovol-taic application. J. Mater. Chem. A 2019, 7, 13860–13872. [Google Scholar] [CrossRef]
- Su, P.; Bai, L.; Bi, H.; Liu, B.; He, D.; Wang, W.; Cao, X.; Chen, S.; Lee, D.; Yang, H.; et al. Crystal Orientation Modulation and Defect Passivation for Efficient and Stable Methylammo-nium-Free Dion-Jacobson Quasi-2D Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 29567–29575. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, M.; Lei, Y.; Ci, Z.; Jin, Z. Crystallization kinetics in 2D perovskite solar cells. Adv. Energy Mater. 2020, 10, 2002558. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, Y.; Fang, Y.; Wang, Q.; Deng, Y.; Huang, J. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2017, 2, 1571–1572. [Google Scholar] [CrossRef]
- Quan, L.N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E.M.; Hoogland, S.; Buin, A.; Kirmani, A.R.; Zhao, K.; Amassian, A.; et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649–2655. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Wu, T.; Wang, J.; Zhai, J.; Shearer, M.J.; Zhao, Y.; Hamers, R.J.; Kan, E.; Deng, K.; Zhu, X.Y.; et al. Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 2017, 17, 4405–4414. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; McGehee, M.D.; Karunadasa, H.I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 2014, 53, 11232–11235. [Google Scholar] [CrossRef]
- Lai, H.; Lu, D.; Xu, Z.; Zheng, N.; Xie, Z.; Liu, Y. Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19%. Adv. Mater. 2020, 32, 2001470. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Peng, J.; Tang, J.; Zheng, K.; Liang, Z. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, X.; Li, Y.; Liu, X.; Yang, T.; Ji, C.; Han, S.; Xu, Y.; Luo, J.; Sun, Z. Exploring Lead-Free Hybrid Double Perovskite Crystals of (BA) 2CsAgBiBr7 with Large Mobility-Lifetime Product toward X-Ray Detection. Angew. Chem. Int. Ed. 2019, 58, 15757–15761. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Zhang, T.; Sun, Q.; Pan, H.; Shen, Y.; Ahmad, S.; Wang, M. Layered Ruddlesden–Popper efficient perovskite solar cells with controlled quantum and dielectric confinement introduced via doping. Adv. Funct. Mater. 2019, 29, 1903293. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, X.; Zhu, T.; Zhu, X.; Huang, L. Electron-phonon scattering in atomically thin 2D perovskites. ACS Nano 2016, 10, 9992–9998. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D homologous perovskites as light-absorbing materials for solar cell ap-plications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef]
- Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Liu, D.; Wang, Y.; Yang, Y.; Li, H.; Zhang, T.; Chen, H.; Ji, L.; Chen, Z.; Li, S. Synergistic effect of additives on 2D perovskite film towards efficient and stable solar cell. Chem. Eng. J. 2020, 389, 124266. [Google Scholar] [CrossRef]
- Huang, F.; Siffalovic, P.; Li, B.; Yang, S.; Zhang, L.; Nadazdy, P.; Cao, G.; Tian, J. Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chem. Eng. J. 2020, 394, 124959. [Google Scholar] [CrossRef]
- Qiu, J.; Zheng, Y.; Xia, Y.; Chao, L.; Chen, Y.; Huang, W. Rapid crystallization for efficient 2D Ruddlesden-Popper (2DRP) perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1806831. [Google Scholar] [CrossRef]
- Lei, L.; Seyitliyev, D.; Stuard, S.; Mendes, J.; Dong, Q.; Fu, X.; Chen, Y.A.; He, S.; Yi, X.; Zhu, L.; et al. Efficient energy funneling in quasi-2D perovskites: From light emission to lasing. Adv. Mater. 2020, 32, 1906571. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Li, X.; Zhu, X.; Yu, J.; Fan, K. Binary solvent engineering for high-performance two-dimensional perovskite solar cells. ACS Sustain. Chem. Eng. 2019, 7, 3487–3495. [Google Scholar] [CrossRef]
- Qing, J.; Liu, X.K.; Li, M.; Liu, F.; Yuan, Z.; Tiukalova, E.; Yan, Z.; Duchamp, M.; Chen, S.; Wang, Y.; et al. Aligned and graded type-II Ruddlesden-Popper perovskite films for efficient solar cells. Adv. Energy Mater. 2018, 8, 1800185. [Google Scholar] [CrossRef] [Green Version]
- Soe CM, M.; Nie, W.; Stoumpos, C.C.; Tsai, H.; Blancon, J.C.; Liu, F.; Even, J.; Marks, T.J.; Mohite, A.D.; Kanatzidis, M.G. Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high-efficiency solar cells. Adv. Energy Mater. 2018, 8, 1700979. [Google Scholar]
- Gao, L.; Zhang, F.; Xiao, C.; Chen, X.; Larson, B.W.; Berry, J.J.; Zhu, K. Improving Charge Transport via Intermediate-Controlled Crystal Growth in 2D Perov-skite Solar Cells. Adv. Funct. Mater. 2019, 29, 1901652. [Google Scholar] [CrossRef]
- Lai, H.; Kan, B.; Liu, T.; Zheng, N.; Xie, Z.; Zhou, T.; Wan, X.; Zhang, X.; Liu, Y.; Chen, Y. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 2018, 140, 11639–11646. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Syzgantseva, O.A.; Syzgantseva, M.A.; Ma, S.; Ding, Y.; Cai, M.; Liu, X.; Dai, S.; Nazeeruddin, M.K. Defect Suppression in Oriented 2D Perovskite Solar Cells with Efficiency over 18% via Rerouting Crystallization Pathway. Adv. Energy Mater. 2021, 11, 2002966. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Fu, W.; Qin, M.; Yang, W.; Yan, J.; Zhang, Z.; Lu, X.; Chen, H. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 2018, 8, 1702498. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Yang, S.; Fu, W.; Zhang, Z.; Chen, C.; Liu, W.; Yan, J.; Yang, W.; Chen, H. Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 2017, 13, 1700611. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Fu, W.; Zhang, X.; Chen, J.; Yang, W.; Qiu, W.; Wu, G.; Liu, F.; Heremans, P.; Chen, H. Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Mater. Chem. Front. 2018, 2, 121–128. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, Y.; He, T.; Li, S.; Wang, H.; Chen, Y.; Yuan, M.; Chen, J. Orientation Regulation of Tin-Based Reduced-Dimensional Perovskites for Highly Efficient and Stable Photovoltaics. Adv. Funct. Mater. 2019, 29, 1807696. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Mahata, A.; Li, M.; Roldán-Carmona, C.; Ding, Y.; Arain, Z.; Xu, W.; Yang, Y.; Schouwink, P.A.; et al. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. Energy Environ. Sci. 2020, 13, 3093–3101. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Meng, K.; Liu, Z.; Hu, Y.; Xu, Q.; Wang, X.; Li, S.; Cheng, L.; Chen, G. A new organic interlayer spacer for stable and efficient 2D Ruddlesden–Popper perovskite solar cells. Nano Lett. 2019, 19, 5237–5245. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Jo, S.B.; Qin, M.; Li, Z.; Liu, T.; Lu, X.; Zhu, Z.; Jen, A.K. Vertical orientated Dion–Jacobson quasi-2D perovskite film with improved photovoltaic performance and stability. Small Methods 2020, 4, 1900831. [Google Scholar] [CrossRef]
- Lian, X.; Chen, J.; Fu, R.; Lau, T.K.; Zhang, Y.; Wu, G.; Lu, X.; Fang, Y.; Yang, D.; Chen, H. An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. J. Mater. Chem. A 2018, 6, 24633–24640. [Google Scholar] [CrossRef]
- Liang, C.; Gu, H.; Xia, Y.; Wang, Z.; Liu, X.; Xia, J.; Zou, S.; Hu, Y.; Gao, X.; Hui, W.; et al. Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 2021, 6, 38–45. [Google Scholar] [CrossRef]
- Zhou, N.; Shen, Y.; Li, L.; Tan, S.; Liu, N.; Zheng, G.; Chen, Q.; Zhou, H. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high per-formance solar cells. J. Am. Chem. Soc. 2018, 140, 459–465. [Google Scholar] [CrossRef]
- Zheng, F.; Zuo, C.; Niu, M.; Zhou, C.; Bradley, S.J.; Hall, C.R.; Xu, W.; Wen, X.; Hao, X.; Gao, M.; et al. Revealing the role of methylammonium chloride for improving the performance of 2D perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 25980–25990. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Dong, C.; Cai, L.; Su, Z.; Zang, J.; Wang, C.; Wang, X.; Zou, Y.; Li, Y.; Chen, L.; et al. Unveiling Crystal Orientation in Quasi-2D Perovskite Films by In Situ GIWAXS for High-Performance Photovoltaics. Small 2021, 17, 2100972. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, X.; Liu, B.; Munir, R.; Zhu, X.; Yang, D.; Li, J.; Liu, Y.; Smilgies, D.M.; Li, R.; et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 2017, 10, 2095–2102. [Google Scholar] [CrossRef]
- Kuai, L.; Li, J.; Li, Y.; Wang, Y.; Li, P.; Qin, Y.; Song, T.; Yang, Y.; Chen, Z.; Gao, X.; et al. Revealing crystallization dynamics and the compositional control mechanism of 2D perov-skite film growth by in situ synchrotron-based gixrd. ACS Energy Lett. 2019, 5, 8–16. [Google Scholar] [CrossRef]
- Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Bermudez, R.; Gold-Parker, A.; Proppe, A.H.; Munir, R.; Yang, Z.; Kelley, S.O.; Amassian, A.; Toney, M.F.; Sargent, E.H. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 2018, 17, 900–907. [Google Scholar] [CrossRef]
- Li, M.; Zuo, W.W.; Yang, Y.G.; Aldamasy, M.H.; Wang, Q.; Cruz, S.H.; Feng, S.L.; Saliba, M.; Wang, Z.K.; Abate, A. Tin halide perovskite films made of highly oriented 2D crystals enable more effi-cient and stable lead-free perovskite solar cells. ACS Energy Lett. 2020, 5, 1923–1929. [Google Scholar] [CrossRef]
- Wu, G.; Li, X.; Zhou, J.; Zhang, J.; Zhang, X.; Leng, X.; Wang, P.; Chen, M.; Zhang, D.; Zhao, K.; et al. Fine multi-phase Alignments in 2D perovskite solar cells with efficiency over 17% via slow post-annealing. Adv. Mater. 2019, 31, 1903889. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, T.; Kaplan, A.B.; Yao, C.; Loo, Y.L. Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells. Nano Lett. 2020, 20, 8880–8889. [Google Scholar] [CrossRef]
- Chen, A.Z.; Shiu, M.; Ma, J.H.; Alpert, M.R.; Zhang, D.; Foley, B.J.; Smilgies, D.M.; Lee, S.H.; Choi, J.J. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xiu, Y.; Liu, Y.; Niu, K.; Cui, J.; Qi, Y.; Lin, C.; Chen, D.; Li, Y.; He, H.; Ye, Z.; et al. Solvent-Vapor Atmosphere Controls the in Situ Crystallization of Perovskites. ACS Mater. Lett. 2021, 3, 1172–1180. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Peng, J.; Zhang, W.; Su, X.; Zheng, K.; Pullerits, T.; Liang, Z. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 2017, 7, 1700162. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, F.; Wang, C.; Zhan, G.; Zheng, N.; Bian, Z.; Liu, Z. Orientation Regulation of Photoactive Layer in Tin-Based Perovskite Solar Cells with Alylammonium Cations. Sol. RRL 2020, 4, 2000315. [Google Scholar] [CrossRef]
- Proppe, A.H.; Quintero-Bermudez, R.; Tan, H.; Voznyy, O.; Kelley, S.O.; Sargent, E.H. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 2018, 140, 2890–2896. [Google Scholar] [CrossRef]
- Ren, H.; Yu, S.; Chao, L.; Xia, Y.; Sun, Y.; Zou, S.; Li, F.; Niu, T.; Yang, Y.; Ju, H.; et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 2020, 14, 154–163. [Google Scholar] [CrossRef]
- Chen, S.; Shen, N.; Zhang, L.; Kong, W.; Zhang, L.; Cheng, C.; Xu, B. Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. J. Mater. Chem. A 2019, 7, 9542–9549. [Google Scholar] [CrossRef]
- Lian, X.; Chen, J.; Qin, M.; Zhang, Y.; Tian, S.; Lu, X.; Wu, G.; Chen, H. The second spacer cation assisted growth of a 2D perovskite film with oriented large grain for highly efficient and stable solar cells. Angew. Chem. 2019, 131, 9509–9513. [Google Scholar] [CrossRef]
- Lian, X.; Chen, J.; Zhang, Y.; Qin, M.; Andersen, T.R.; Ling, J.; Wu, G.; Lu, X.; Yang, D.; Chen, H. Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. J. Mater. Chem. A 2019, 7, 19423–19429. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Y.; Ye, H.; Zheng, Y.; Wei, Q.; Xia, Y.; Chen, Y.; Zhao, K.; Huang, W.; Liu, S. Centimeter-Sized Single Crystal of Two-Dimensional Halide Perovskites Incorporating Straight-Chain Symmetric Diammonium Ion for X-Ray Detection. Angew. Chem. Int. Ed. 2020, 59, 14896–14902. [Google Scholar] [CrossRef]
- Li, H.; Song, J.; Pan, W.; Xu, D.; Zhu, W.; Wei, H.; Yang, B. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor. Adv. Mater. 2020, 32, 2003790. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Sun, Q.; Wang, F.; Wang, S.; Zhang, B.B.; Wang, J.; Jie, W.; Sellin, P.; Xu, Y. Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. J. Mater. Chem. A 2021, 9, 13209–13219. [Google Scholar] [CrossRef]
- Zhuang, R.; Wang, X.; Ma, W.; Wu, Y.; Chen, X.; Tang, L.; Zhu, H.; Liu, J.; Wu, L.; Zhou, W.; et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 2019, 13, 602–608. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yang, Z.; Cui, J.; Wu, H.; Ren, X.; Zhao, K.; Feng, J.; Tang, J.; Xu, Z.; et al. Large Lead-Free Perovskite Single Crystal for High-Performance Coplanar X-Ray Imaging Applications. Adv. Opt. Mater. 2020, 8, 2000814. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.Y.; Jeong, D.N.; Seo, J.Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef]
- Ji, C.; Wang, S.; Wang, Y.; Chen, H.; Li, L.; Sun, Z.; Sui, Y.; Wang, S.; Luo, J. 2D Hybrid Perovskite Ferroelectric Enables Highly Sensitive X-Ray Detection with Low Driving Voltage. Adv. Funct. Mater. 2020, 30, 1905529. [Google Scholar] [CrossRef]
- Guo, W.; Liu, X.; Han, S.; Liu, Y.; Xu, Z.; Hong, M.; Luo, J.; Sun, Z. Room-Temperature Ferroelectric Material Composed of a Two-Dimensional Metal Hal-ide Double Perovskite for X-ray Detection. Angew. Chem. 2020, 132, 13983–13988. [Google Scholar] [CrossRef]
- Tsai, H.; Liu, F.; Shrestha, S.; Fernando, K.; Tretiak, S.; Scott, B.; Vo, A.T.; Strzalka, J.; Nie, W. A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Sci. Adv. 2020, 6, eaay0815. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.F.; Li, H.; Li, M.G.; Cui, Y.; Song, X.; Wang, Q.W.; Jiang, J.Y.; Hua, M.M.; Xu, Q.; Zhao, K.; et al. Centimeter-Sized Single Crystals of Two-Dimensional Hybrid Iodide Double Perov-skite (4,4-Difluoropiperidinium)4AgBiI8 for High-Temperature Ferroelectricity and Efficient X-Ray Detection. Adv. Funct. Mater. 2021, 31, 2009457. [Google Scholar] [CrossRef]
Chemical Formula | 2D Type | Device Structure | Ab Plane Sensitivity (μC Gyair−1 cm−2) | Limit of Detection (nGyair s−1) | μτ (cm2V−1) | Response Time |
---|---|---|---|---|---|---|
(BDA)PbI4 SC [54] | DJ | Ag/OIHP/Ag | 242 (40 kVp, 310 V/mm) | 430 (40 kVp, 310 V/mm) | N/A | τrise = 7.3 ms, τfall = 22.5 ms |
BA2CsAgBiBr7 SC [12] | RP | Au/OIHP/Au | 4.2 (70 keV *, 10 V) | N/A | 1.21 × 10−3 | N/A |
BA2EA2Pb3Br10 SC [60] | RP | Au/OIHP/Au | 6800 (70 keV *, 5 V/mm) | 5500 | 1.0 × 10−2 | N/A |
(CPA)4AgBiBr8 SC [61] | RP | Au/OIHP/Au | 0.8 (70 keV *, 10 V) | N/A | 1.0 × 10−3 | N/A |
(BA)2(MA)2Pb3I10 film [62] | RP | p-i-n ITO/PTAA/OIHP/C60/Au | ~13 (10.91 average keV, 0 V/mm) | N/A | N/A | τrise < 500 ns, τfall = 20–60 μs |
(F-PEA)2PbI4 SC [56] | RP | Au/OIHP/C60/BCP/Cr | 3402 (120 keVp, 133 V/mm) | 23 (120 keVp, 133 V/mm) | 5.1 × 10−4 | 0.8 μs |
(BA)2CsPb2Br7 SC [57] | RP | Au/OIHP/Au | 13,260 (40 kVp, 2.53 V/mm) | 72.5 (40 kVp, 2.53 V/mm) | N/A | N/A |
(DFPIP)4AgBiI8 SC [63] | RP | Au/OIHP | 188 (40 kVp, 50 V) | 3130 (40 kVp, 50 V) | 1.1 × 10−5 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, Y.; Xue, D. 2D Organic–Inorganic Hybrid Perovskite Quantum Well Materials and Their Dramatical X-ray Optoelectronic Properties. Materials 2021, 14, 5539. https://doi.org/10.3390/ma14195539
Chen H, Li Y, Xue D. 2D Organic–Inorganic Hybrid Perovskite Quantum Well Materials and Their Dramatical X-ray Optoelectronic Properties. Materials. 2021; 14(19):5539. https://doi.org/10.3390/ma14195539
Chicago/Turabian StyleChen, Huiwen, Yunlong Li, and Dongfeng Xue. 2021. "2D Organic–Inorganic Hybrid Perovskite Quantum Well Materials and Their Dramatical X-ray Optoelectronic Properties" Materials 14, no. 19: 5539. https://doi.org/10.3390/ma14195539
APA StyleChen, H., Li, Y., & Xue, D. (2021). 2D Organic–Inorganic Hybrid Perovskite Quantum Well Materials and Their Dramatical X-ray Optoelectronic Properties. Materials, 14(19), 5539. https://doi.org/10.3390/ma14195539