Microstructure and Mechanical Properties of Carbides Reinforced Nickel Matrix Alloy Prepared by Selective Laser Melting
Abstract
:1. Introduction
2. Experimental
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Liaw, P.; Sun, Y.; Wang, G.; Thompson, S.; Blust, J.; Browning, P.; Bhattacharya, A.; Aurrecoechea, J.; Klarstrom, D. Hold-time effect on the elevated-temperature crack growth behavior of solid-solution-strengthened superalloys. Acta Mater. 2006, 55, 767–775. [Google Scholar] [CrossRef]
- Boehlert, C.J.; Longanbach, S.C. A comparison of the microstructure and creep behavior of cold rolled HAYNES® 230 alloy™ and HAYNES® 282 alloy™. Mater. Sci. Eng. A 2011, 528, 4888–4898. [Google Scholar] [CrossRef]
- Lee, S.; Lu, Y.; Liaw, P.; Chen, L.; Thompson, S.; Blust, J.; Browning, P.; Bhattacharya, A.; Aurrecoechea, J.; Klarstrom, D. Tensile-hold low-cycle-fatigue properties of solid-solution-strengthened superalloys at elevated temperatures. Mater. Sci. Eng. A 2009, 504, 64–72. [Google Scholar] [CrossRef]
- Tang, Y.T.; Panwisawas, C.; Ghoussoub, J.N.; Gong, Y.; Clark, J.W.; Németh, A.A.; McCartney, D.G.; Reed, R.C. Alloys-by-design: Application to new superalloys for additive manufacturing. Acta Mater. 2020, 202, 417–436. [Google Scholar] [CrossRef]
- Hong, C.; Gu, D.; Dai, D.; Alkhayat, M.; Urban, W.; Yuan, P.; Cao, S.; Gasser, A.; Weisheit, A.; Kelbassa, I.; et al. Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: Tailored microstructures and enhanced performance. Mater. Sci. Eng. A 2015, 635, 118–128. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, G.; Yang, C.; Zhou, W.; Wang, D.; Dong, A.; Shu, D.; Sun, B. Novel selective laser melting processed in-situ TiC particle-reinforced Ni matrix composite with excellent processability and mechanical properties. Mater. Sci. Eng. A 2020, 797, 140145. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, G.; Wang, R.; Wang, D.; Pan, W.; Zhou, W.; Du, D.; Dong, A.; Shu, D.; Sun, B. Novel in situ synthesized carbide reinforced Ni base composite for structural castings with high creep resistance. Mater. Des. 2019, 172, 107711. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, P.; Zhang, S.; Lu, B.; Zhang, L.; Yang, X.; Huang, K.; Huang, Y.; Li, X.; Zhao, Q. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing. Mater. Sci. Eng. A 2019, 769, 138484. [Google Scholar] [CrossRef]
- Rong, T.; Gu, D. Formation of novel graded interface and its function on mechanical properties of WC1−x reinforced Inconel 718 composites processed by selective laser melting. J. Alloys Compd. 2016, 680, 333–342. [Google Scholar] [CrossRef]
- Divya, V.D.; Muñoz-Moreno, R.; Messé, O.M.D.M.; Barnard, J.S.; Baker, S.; Illston, T.; Stone, H.J. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment. Mater. Charact. 2016, 114, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Kontis, P.; Chauvet, E.; Peng, Z.; He, J.; Da Silva, A.K.; Raabe, D.; Tassin, C.; Blandin, J.-J.; Abed, S.; Dendievel, R.; et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys. Acta Mater. 2019, 177, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Wahlmann, B.; Galgon, F.; Stark, A.; Gayer, S.; Schell, N.; Staron, P.; Körner, C. Growth and coarsening kinetics of gamma prime precipitates in CMSX-4 under simulated additive manufacturing conditions. Acta Mater. 2019, 180, 84–96. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nat. Cell Biol. 2017, 549, 365–369. [Google Scholar] [CrossRef]
- Surmeneva, M.A.; Koptyug, A.; Khrapov, D.; Ivanov, Y.F.; Mishurova, T.; Evsevleev, S.; Prymak, O.; Loza, K.; Epple, M.; Bruno, G.; et al. In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders. J. Mater. Process. Technol. 2020, 282, 116646. [Google Scholar] [CrossRef]
- Gallmeyer, T.G.; Moorthy, S.; Kappes, B.B.; Mills, M.J.; Amin-Ahmadi, B.; Stebner, A.P. Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718. Addit. Manuf. 2019, 31, 100977. [Google Scholar] [CrossRef]
- Yeung, H.; Lane, B.; Fox, J. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Addit. Manuf. 2019, 30, 100844. [Google Scholar] [CrossRef]
- Tillmann, W.; Schaak, C.; Nellesen, J.; Schaper, M.; Aydinöz, M.; Hoyer, K.-P. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit. Manuf. 2017, 13, 93–102. [Google Scholar] [CrossRef]
- Witkin, D.B.; Patel, D.; Albright, T.V.; Bean, G.E.; McLouth, T. Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion. Int. J. Fatigue 2019, 132, 105392. [Google Scholar] [CrossRef]
- Geiger, F.; Kunze, K.; Etter, T. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Mater. Sci. Eng. A 2016, 661, 240–246. [Google Scholar] [CrossRef]
- Kanagarajah, P.; Brenne, F.; Niendorf, T.; Maier, H. Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater. Sci. Eng. A 2013, 588, 188–195. [Google Scholar] [CrossRef]
- Chan, K.; Wang, C.; Zhang, K.; Pang, G. Superplastic deformation behavior of the electrocodeposited Ni/SiC composite. Scr. Mater. 2004, 51, 605–609. [Google Scholar] [CrossRef]
- Shen, M.-Y.; Tian, X.-J.; Liu, D.; Tang, H.-B.; Cheng, X. Microstructure and fracture behavior of TiC particles reinforced Inconel 625 composites prepared by laser additive manufacturing. J. Alloys Compd. 2018, 734, 188–195. [Google Scholar] [CrossRef]
- Haack, M.; Kuczyk, M.; Seidel, A.; López, E.; Brueckner, F.; Leyens, C. Comprehensive study on the formation of grain boundary serrations in additively manufactured Haynes 230 alloy. Mater. Charact. 2019, 160, 110092. [Google Scholar] [CrossRef]
- Bai, G.; Li, J.; Hu, R.; Tang, Z.; Xue, X.; Fu, H. Effect of temperature on tensile behavior of Ni–Cr–W based superalloy. Mater. Sci. Eng. A 2011, 528, 1974–1978. [Google Scholar] [CrossRef]
- Bai, G.; Li, J.; Hu, R.; Zhang, T.; Kou, H.; Fu, H. Effect of thermal exposure on the stability of carbides in Ni–Cr–W based superalloy. Mater. Sci. Eng. A 2011, 528, 2339–2344. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Lou, L.H. Formation and stability of nano-scaled M23C6 carbide in a directionally solidified Ni-base superalloy. Mater. Charact. 2009, 60, 1517–1521. [Google Scholar] [CrossRef]
- Zhou, D.; Qiu, F.; Jiang, Q. Simultaneously increasing the strength and ductility of nano-sized TiN particle reinforced Al–Cu matrix composites. Mater. Sci. Eng. A 2014, 596, 98–102. [Google Scholar] [CrossRef]
- Park, J.G.; Kim, J.-G.; So, K.P.; Hwang, J.Y.; Kim, E.S.; Li, J.; Suh, D.; Lee, Y.H. Anisotropic mechanical properties and strengthening mechanism in superaligned carbon nanotubes-reinforced aluminum. Carbon 2019, 153, 513–524. [Google Scholar] [CrossRef]
- Azadi, M.; Marbout, A.; Safarloo, S.; Azadi, M.; Shariat, M.; Rizi, M.H. Effects of solutioning and ageing treatments on properties of Inconel-713C nickel-based superalloy under creep loading. Mater. Sci. Eng. A 2018, 711, 195–204. [Google Scholar] [CrossRef]
Elements | C | Cr | Co | Al | W | Mo | Ti | Fe | Ni |
---|---|---|---|---|---|---|---|---|---|
Content/% | 0.08 | 21.96 | 0.18 | 0.36 | 13.38 | 2.02 | 0.014 | 1.8 | Bal. |
Content/% | 0.15 | 21.96 | 0.18 | 0.36 | 13.38 | 2.02 | 0.014 | 1.8 | Bal. |
Test Temperature | Direction | YS/MPa | UTS/MPa | El/% |
---|---|---|---|---|
RT | Horizontal | 336 ± 3.4 | 769 ± 4.6 | 37 ± 7.3 |
Vertical | 340 ± 4.2 | 800 ± 5.2 | 58.5 ± 10.5 | |
900 | Horizontal | 188 ± 3.2 | 280 ± 4.7 | 31 ± 8.2 |
Vertical | 196 ± 4.1 | 295 ± 3.9 | 56 ± 9.1 | |
1000 | Horizontal | 100 ± 5.5 | 154 ± 4.8 | 13.5 ± 4.5 |
Vertical | 99 ± 4.7 | 152 ± 4.3 | 17.4 ± 5.3 | |
1100 | Horizontal | 60 ± 4.1 | 96 ± 3.3 | 11.5 ± 3.3 |
Vertical | 63 ± 4.2 | 97 ± 2.9 | 16.9 ± 5.8 |
Test Temperature | Direction | YS/MPa | UTS/MPa | El/% |
---|---|---|---|---|
RT | Horizontal | 453 ± 5.7 | 733 ± 8.1 | 9.5 ± 3.1 |
Vertical | 453 ± 6.9 | 903 ± 10.5 | 36 ± 8.6 | |
900 | Horizontal | 193 ± 5.2 | 265 ± 6.8 | 15 ± 4.1 |
Vertical | 205 ± 4.3 | 275 ± 7.1 | 95.5 ± 10.4 | |
1000 | Horizontal | 128 ± 3.6 | 175 ± 5.4 | 6.5 ± 2.2 |
Vertical | 136 ± 4.1 | 113 ± 4.9 | 60.5 ± 9.8 | |
1100 | Horizontal | 70 ± 2.2 | 107 ± 4.5 | 5 ± 2.1 |
Vertical | 86 ± 3.2 | 116 ± 4.2 | 44.5 ± 9.2 |
Elements | Ni | Co | Cr | Mo | Fe | W | C |
---|---|---|---|---|---|---|---|
Point 1 | 2.4 | 3.3 | 48.5 | 24.3 | 4.6 | 4.1 | 12.8 |
Point 2 | 1.8 | 2.1 | 4.5 | 29.1 | 2.7 | 41.6 | 18.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, T.; Wang, R.; Bi, Z.; Wang, R.; Zhang, P.; Sun, G.; Zhang, J. Microstructure and Mechanical Properties of Carbides Reinforced Nickel Matrix Alloy Prepared by Selective Laser Melting. Materials 2021, 14, 4792. https://doi.org/10.3390/ma14174792
Xia T, Wang R, Bi Z, Wang R, Zhang P, Sun G, Zhang J. Microstructure and Mechanical Properties of Carbides Reinforced Nickel Matrix Alloy Prepared by Selective Laser Melting. Materials. 2021; 14(17):4792. https://doi.org/10.3390/ma14174792
Chicago/Turabian StyleXia, Tian, Rui Wang, Zhongnan Bi, Rui Wang, Peng Zhang, Guangbao Sun, and Ji Zhang. 2021. "Microstructure and Mechanical Properties of Carbides Reinforced Nickel Matrix Alloy Prepared by Selective Laser Melting" Materials 14, no. 17: 4792. https://doi.org/10.3390/ma14174792
APA StyleXia, T., Wang, R., Bi, Z., Wang, R., Zhang, P., Sun, G., & Zhang, J. (2021). Microstructure and Mechanical Properties of Carbides Reinforced Nickel Matrix Alloy Prepared by Selective Laser Melting. Materials, 14(17), 4792. https://doi.org/10.3390/ma14174792