Elastic Properties and Energy Loss Related to the Disorder–Order Ferroelectric Transitions in Multiferroic Metal–Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Morphology
2.3. Powder XRD
2.4. DSC
2.5. DMA
3. Results and Discussion
3.1. Morphology
3.2. Powder XRD
3.3. DSC
3.4. DMA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheetham, A.K.; Rao, C.N.R. There’s room in the middle. Science 2007, 318, 58–59. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Cheetham, A.K.; Thirumurugan, A.J. Hybrid inorganic-organic materials, a new family in condensed matter physics. Phys. Condens. Matter 2008, 20, 083202. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Cheong, S.W.; Ramesh, R. Multiferroics, past, present and future. Phys. Today 2010, 63, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.A.; Keitz, B.K.; Oktawiec, J.; Mason, J.A.; Runcevski, T.; Xiao, D.J.; Darago, L.E.; Crocella, V.; Bordiga, S.; Long, J.R. A spin transition mechanism for cooperative adsorption in metal-organic frameworks. Nature 2017, 550, 96–100. [Google Scholar] [CrossRef]
- Han, X.; Godfrey, H.G.W.; Briggs, L.; Davies, A.J.; Cheng, Y.Q.; Daemen, L.L.; Sheveleva, A.M.; Tuna, F.; Mclnnes, E.J.L.; Sun, J.L.; et al. Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework. Nat. Mater. 2018, 17, 691–696. [Google Scholar] [CrossRef]
- Shen, K.; Zhang, L.; Chen, X.D.; Liu, L.M.; Zhang, D.L.; Han, Y.; Chen, J.Y.; Long, J.L.; Luque, R.; Li, Y.W.; et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Xu, X.H.; Ma, Y.H.; Cho, H.S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmoo, M. Anionic NaCl-type frameworks of [MnII(HCOO)3-], templated by alkylammonium, exhibit weak ferromagnetism. Dalton Trans. 2004, 15, 2209–2216. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, K.; Gao, S.; Kobayashi, H. Formate-based magnetic metal-organic frameworks templated by protonated amines. Adv. Mater. 2010, 22, 1526–1533. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, R. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163–1195. [Google Scholar] [CrossRef]
- Li, W.; Henke, S.; Cheetham, A.K. Research update, mechanical properties of metal-organic frameworks—influence of structure and chemical bonding. APL Mater. 2014, 2, 123902. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, M.A. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J. Phys. Condens. Matter 2015, 27, 263201–263223. [Google Scholar] [CrossRef]
- Asadi, K.; Veen, M.A. Ferroelectricity in metal-organic frameworks, characterization and mechanisms. Eur. J. Inorg. Chem. 2016, 4332–4344. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, Z.M.; Deschler, F.; Gao, S.; Friend, R.H.; Cheetham, A.K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nat. Rev. Mater. 2017, 2, 16099–16116. [Google Scholar] [CrossRef]
- Maczka, M.; Pietraszko, A.; Macalik, B.; Kermanowicz, K. Structure, phonon properties, and order-disorder transition in the metal formate framework of [NH4][Mg(HCOO)3]. Inorg. Chem. 2014, 53, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Li, W.; Carpenter, M.A.; Howard, C.J.; Cheetham, A.K. Elastic properties and acoustic dissipation associated with a disorder-order ferroelectric transition in a metal-organic framework. CrystEngComm 2015, 17, 370–374. [Google Scholar] [CrossRef]
- Xu, G.C.; Ma, X.M.; Zhang, L.; Wang, Z.M.; Gao, S. Disorder-order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. J. Am. Chem. Soc. 2010, 132, 9588–9590. [Google Scholar] [CrossRef]
- Li, W.; Probert, M.R.; Kosa, M.; Bennett, T.D.; Thirumurugan, A.; Burwood, R.P.; Parinello, M.; Howard, J.A.K.; Cheetham, A.K. Negative linear compressibility of a metal-organic framework. J. Am. Chem. Soc. 2012, 134, 11940–11943. [Google Scholar] [CrossRef] [PubMed]
- Maczka, M.; Kadlubanski, P.; Freire, P.T.C.; Macalik, B.; Paraguassu, W.; Hermanowicz, K.; Hanuza, J. Temperature- and pressure-induced phase transitions in the metal formate framework of [ND4][Zn(DCOO)3] and [NH4][Zn(HCOO)3]. Inorg. Chem 2014, 53, 9615–9624. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Zhang, B.; Inoue, K.; Fujiwara, H.; Otsuka, T.; Kobayashi, H.; Kurmoo, M. Occurrence of a rare 49∙66 structural topology, chirality, and weak ferromagnetism in the [NH4][MII(HCOO)3] (M=Mn, Co, Ni) frameworks. Inorg. Chem. 2007, 46, 437–445. [Google Scholar] [CrossRef]
- Xu, G.C.; Zhang, W.; Ma, X.M.; Chen, Y.H.; Zhang, L.; Cai, H.L.; Wang, Z.M.; Xiong, R.G.; Gao, S. Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. J. Am. Chem. Soc. 2011, 133, 14948–14951. [Google Scholar] [CrossRef] [PubMed]
- Maczka, M.; Ptak, M.; Kojima, S. Brillouin scattering study of ferroelectric transition mechanism in multiferroic metal-organic frameworks of [NH4][Mn(HCOO)3] and [NH4][Zn(HCOO)3]. Appl. Phys. Lett. 2014, 104, 222903–222906. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.M.M.; Manuel, P.; Thompson, A.L.; Saines, P.J. Probing ferroic transitions in a multiferroic framework family, a neutron diffraction study of the ammonium transition metal formats. Dalton Trans. 2015, 44, 11613–11620. [Google Scholar] [CrossRef]
- Collings, I.E.; Bykov, M.; Bykova, E.; Tucker, M.G.; Petitgirard, S.; Hanfland, M.; Glazyrin, K.; Smaalen, S.V.; Goodwin, A.L.; Dubrovinsky, L.; et al. Structural distortions in the high-pressure polar phases of ammonium metal formats. CrystEngComm 2016, 18, 8849–8857. [Google Scholar] [CrossRef] [Green Version]
- Volkova, L.M.; Marinin, D.V. Possibility of emergence of chiral magnetic soliton in hexagonal metal formate [NH4][M(HCOO)3] with M2+ = Mn, Fe, Co, and Ni and KCo(HCOO)3. J. Supercond. Novel Magn. 2016, 29, 2931–2945. [Google Scholar] [CrossRef]
- Wang, X.J.; Gou, G.Y.; Wang, D.W.; Xiao, H.Y.; Liu, Y.; Zhang, M.; Dkhil, B.; Ren, X.B.; Lou, X.J. Structural, electronic and magnetic properties of metal-organic-framework perovskites [AmH][Mn(HCOO)3], a first-principles study. RSC Adv. 2016, 6, 48779–48787. [Google Scholar] [CrossRef]
- Peksa, P.; Zareba, J.K.; Ptak, M.; Maczk, M.; Gagor, A.; Pawlus, S.; Sieradzki, A. Revisiting a perovskite-like copper-formate framework NH4[Cu(HCOO)3]: Order-disorder transition influenced by Jahn-Teller distortion and above room-temperature switching of the nonlinear optical response between two SHG-active states. J. Phys. Chem. C 2020, 124, 18714. [Google Scholar] [CrossRef]
- Sun, Y.J.; Zhuo, Z.W.; Wu, X.J. Ferroelectricity and magnetism in metal-formate frameworks of [NH4][M(HCOO)3] (M = Sc to Zn), a first-principles study. RSC Adv. 2016, 6, 113234–113239. [Google Scholar] [CrossRef]
- Jain, P.; Dalal, N.S.; Toby, B.H.; Kroto, H.W.; Cheetham, A.K. Order-disorder antiferroelectric phase transition in a hybrid inorganic-organic framework with the perovskite architecture. J. Am. Chem. Soc. 2008, 130, 10450–10451. [Google Scholar] [CrossRef]
- Besara, T.; Jain, P.; Dalal, N.S.; Kuhns, P.L.; Reyes, A.P.; Kroto, H.W.; Cheetham, A.K. Mechanism of the order-disorder phase transition, and glassy behavior in the metal-organic framework [(CH3)2NH2][Zn(HCOO)3]. Proc. Natl. Acad. Sci. USA 2011, 106, 6828–6832. [Google Scholar] [CrossRef] [Green Version]
- Asaji, T.; Ashitomi, K. Phase transition and cationic motion in a metal-organic perovskite, dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3]. J. Phys. Chem. C 2013, 117, 10185–10190. [Google Scholar] [CrossRef]
- Abhyankar, N.; Kweon, J.J.; Orio, M.; Bertaina, S.; Lee, M.; Choi, E.S.; Fu, R.; Dalal, N.S. Understanding ferroelectricity in the Pb-free perovskite-like metal organic framework [(CH3)2NH2]Zn(HCOO)3, dielectric, 2D NMR, and theoretical studies. J. Phys. Chem. C 2017, 121, 6314–6322. [Google Scholar] [CrossRef]
- Rossin, A.; Ienco, A.; Costantino, F.; Montini, T.; Credico, D.; Caparoli, M.; Gonsalvi, L.; Fornasiero, P.; Peruzzini, M. Phase transitions and CO2 adsorption properties of polymeric magnesium formate. Cryst. Growth Des. 2008, 8, 3302–3308. [Google Scholar] [CrossRef]
- Rossin, A.; Fairen-Jimenez, D.; Dulren, T.; Giambastiani, G.; Peruzzini, M.; Vitillo, J.G. Hydrogen uptake by {H[Mg(HCOO)3] ⊃NHMe2}∞ and determination of its H2 adsorption sites through Monte Carlo simulations. Langmuir 2011, 27, 10124–10131. [Google Scholar] [CrossRef] [PubMed]
- Pato-Doldan, B.; Sanchez-Andujar, M.; Gomez-Aguirre, L.C.; Yanez-Vilar, S.; Lopez-Beceiro, J.; Gracia-Fernandez, C.; Haghighirad, A.A.; Ritter, F.; Castro-Garcia, S.; Senaris-Rodriguez, M.A. Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. Phys. Chem. Chem. Phys. 2012, 14, 8498–8501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asaji, T.; Yoshitake, S.; Ito, Y.; Fujimori, H. Phase transition and cationic motion in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]. J. Mol. Struct. 2014, 1076, 719–723. [Google Scholar] [CrossRef]
- Maczka, M.; Da Silva, T.A.; Paraguassu, W.; Da Silva, K.P. Raman scattering studies of pressure-induced phase transitions in perovskite formates [(CH3)2NH2][Mg(HCOO)3] and [(CH3)2NH2][Cd(HCOO)3]. Spectrochim. Acta Part A 2016, 156, 112–117. [Google Scholar] [CrossRef]
- Szymborska-Malek, K.; Trzebiatowska-Gusowska, M.; Maczka, M.; Gagor, A. Temperature-dependent IR and Raman studies of metal-organic frameworks [(CH3)2NH2][M(HCOO)3] (M=Mg, Cd). Spectrochim. Acta Part A 2016, 159, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Tang, H.; Cheng, D.P.; Zhang, J.K.; Chen, Y.T.; Shen, X.; Yu, H.L. Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure. Results Phys. 2019, 12, 2183–2188. [Google Scholar] [CrossRef]
- Thomson, R.I.; Jain, P.; Cheetham, A.K.; Carpenter, M.A. Elastic relaxation behavior, magnetoelastic coupling, and order-disorder processes in multiferroic metal-organic frameworks. Phys. Rev. B 2012, 86, 214304–214310. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.P.; Zhang, Z.Y.; Carpenter, M.A.; Zhang, M.; Jin, F.; Zhang, Q.M.; Wang, X.M.; Tang, W.H.; Lou, X.J. Strain coupling and dynamic relaxation in a molecular perovskite-like multiferroic metal-organic framework. Adv. Funct. Mater. 2018, 28, 1806013. [Google Scholar] [CrossRef]
- Baker, P.J.; Lancaster, T.; Franke, I.; Hayes, W.; Blundell, S.J.; Pratt, F.L.; Jain, P.; Wang, Z.M.; Kurmoo, M. Muon spin relaxation investigation of magnetic ordering in the hybrid organic-inorganic perovskites [(CH3)2NH2]M(HCOO)3, M=Ni, Co, Mn, Cu. Phys. Rev. B 2010, 82, 012407–012410. [Google Scholar] [CrossRef] [Green Version]
- Nagabhushana, G.P.; Shivaramaiah, R.; Navrotsky, A. Thermochemistry of multiferroic organic–inorganic hybrid perovskites [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni, and Zn). J. Am. Chem. Soc. 2015, 137, 10351–10356. [Google Scholar] [CrossRef]
- Jain, P.; Stroppa, A.; Nabok, D.; Marino, A.; Rubano, A.; Paparo, D.; Matsubara, M.; Nakotte, H.; Feibig, M.; Picozzi, S.; et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework. NPJ Quantum Mater. 2016, 1, 16012. [Google Scholar] [CrossRef] [Green Version]
- Clune, A.J.; Hughey, K.D.; Lee, C.; Abhyankar, N.; Ding, X.; Dalal, N.S.; Whangbo, M.H.; Singleton, J.; Musfeldt, J.L. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3. Phys. Rev. B 2017, 96, 104424. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Cong, J.Z.; Chai, Y.S.; Yan, L.Q.; Shang, D.S.; Sun, Y. Large pyroelectric and thermal expansion coefficients in the [(CH3)2NH2]Mn(HCOO)3 metal-organic framework. Appl. Phys. Lett. 2017, 111, 042901. [Google Scholar] [CrossRef]
- Xin, L.P.; Fan, Z.; Li, G.H.; Zhang, M.; Han, Y.H.; Wang, J.; Ong, K.P.; Qin, L.; Zheng, Y.Z.; Lou, X.J. Growth of centimeter-sized [(CH3)2NH2][Mn(HCOO)3] hybrid formate perovskite single crystals and Raman evidence of pressure-induced phase transitions. New J. Chem. 2017, 41, 151–159. [Google Scholar] [CrossRef]
- Malik, V.; Maity, S.; Chatterjee, R. Temperature dependent negative differential resistance behavior in multiferroic metal organic framework [(CH3)2NH2][Mn(HCOO)3] crystals. Org. Electron 2018, 56, 5–10. [Google Scholar] [CrossRef]
- Collings, I.E.; Bykov, M.; Bykova, E.; Hanfland, M.; Smaalen, S.; Dubrovinsky, L.; Bykova, E. Disorder-order transitions in the perovskite metal-organic frameworks [(CH3)2NH2][Mn(HCOO)3] at high pressure. CrystEngComm 2018, 20, 3512–3521. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Wang, Z.; Wang, H.; Qu, Z.; Chen, Q.W. Tuning the structure and properties of a multiferroic metal-organic-framework via growing under high magnetic fields. RSC Adv. 2018, 8, 13675–13678. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.T.; Pan, D.S.; Li, Y.; Li, D.; Choi, C.J.; Zhang, Z.D. Magnetic transitions in metal-organic frameworks of [(CH3)2NH2][FeII(HCOO)3], [(CH3)2NH2][CoII(HCOO)3] and [(CH3)2NH2][ FeIII FeII(HCOO)6]. J. Magn. Magn. Mater. 2020, 493, 165715. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.X.; Cong, J.Z.; Sun, Y. Magnetic-field tuning of hydrogen bond order-disorder transition in metal-organic frameworks. Phys. Rev. Lett. 2019, 122, 255701. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Shen, X.; Yu, H.L.; Wang, X.M.; Sun, L.; Yue, S.M.; Cheng, D.P.; Tang, H. Elastic properties and energy dissipation related to the disorder-order ferroelectric transition in a multiferroic metal-organic framework [(CH3)2NH2][Fe(HCOO)3] with a perovskite-like structure. Materials 2021, 14, 2403. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Y. Multiferroic and thermal expansion properties of metal-organic frameworks. J. Appl. Phys 2020, 127, 080901–080910. [Google Scholar] [CrossRef]
- Yu, Z.P.; Liu, C.; Shen, Z.W.; Zhai, K. Pressure effect on order-disorder ferroelectric transition in a hydrogen-bonded metal-organic framework. J. Phys. Chem. Lett. 2020, 11, 9566–9571. [Google Scholar] [CrossRef]
- Collings, I.E.; Vasiukov, D.M.; McCammon, C.A.; Dubrovinsky, L.; Cerantola, V.; Petitgirard, S.; Hubschle, C.B.; Schonleber, A.; Chernyshov, D.; Smaalen, S.; et al. Local structure of ferroic iron formats at low temperature and high pressure studies by Mossbauer spectroscopy. J. Phys. Chem. C 2019, 123, 21676. [Google Scholar] [CrossRef]
- Simenas, M.; Balciunas, S.; Gonzalez-Nelson, A.; Kinka, M.; Ptak, M.; Van der Veen, M.A.; Maczka, M.; Banys, J. Preparation and Dielectric Characterization of P(VDF-TrFE) Copolymer Based Composites Containing Metal-Formate Frameworks. J. Phys. Chem. C 2019, 123, 16380. [Google Scholar] [CrossRef]
- Ramakrishna, S.K.; Kundu, K.; Bindra, J.K.; Locicero, S.A.; Talham, D.R.; Reyes, A.P.; Fu, R.Q.; Dalal, N.S. Probing the dielectric transition and molecular dynamics in the metal-organic framework [(CH3)2NH2][Mg(HCOO)3] using high resolution NMR. J. Phys. Chem. C 2021, 125, 3441. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Yu, H.; Shen, X.; Sun, L.; Yue, S.; Tang, H. Elastic Properties and Energy Loss Related to the Disorder–Order Ferroelectric Transitions in Multiferroic Metal–Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3]. Materials 2021, 14, 3125. https://doi.org/10.3390/ma14113125
Zhang Z, Yu H, Shen X, Sun L, Yue S, Tang H. Elastic Properties and Energy Loss Related to the Disorder–Order Ferroelectric Transitions in Multiferroic Metal–Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3]. Materials. 2021; 14(11):3125. https://doi.org/10.3390/ma14113125
Chicago/Turabian StyleZhang, Zhiying, Hongliang Yu, Xin Shen, Lei Sun, Shumin Yue, and Hao Tang. 2021. "Elastic Properties and Energy Loss Related to the Disorder–Order Ferroelectric Transitions in Multiferroic Metal–Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3]" Materials 14, no. 11: 3125. https://doi.org/10.3390/ma14113125
APA StyleZhang, Z., Yu, H., Shen, X., Sun, L., Yue, S., & Tang, H. (2021). Elastic Properties and Energy Loss Related to the Disorder–Order Ferroelectric Transitions in Multiferroic Metal–Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3]. Materials, 14(11), 3125. https://doi.org/10.3390/ma14113125