Metal Borohydrides beyond Groups I and II: A Review
Abstract
:1. Introduction
2. Synthesis
- Direct synthesis from elements. Usually, this kind of synthesis requires high pressure and temperature. Reducing particle size can (but not always) accelerate reaction kinetics. An example is the synthesis of LiBH4 from Li, B, and H2 at 150 bar and a temperature of 975 K [26].
- Syntheses using B2H6: For example, during wet synthesis, reagents such as Mg(CH2CH3)2 and B2H6 can react to produce the corresponding Mg-borohydride [28]. In solid–gas-type reactions, a metal hydride and B2H6 can react during ball milling. Notice that B2H6 is a toxic and unstable gas.
- Reactive composites of metals or metal hydrides and metal borides. This type of synthesis has been widely demonstrated for Li, Na, and Ca-borohydrides. The metal borides serve as a B-source, enhancing the kinetics and reducing thermodynamic constraints. Importantly, this kind of synthesis has demonstrated some degree of reversibility, particularly if MgH2 and MgB2 are involved.
- 4.
- Metathesis. This type of reaction is the most widely used synthesis method for borohydrides beyond Groups I and II, both by wet chemistry and ball-mill assisted synthesis. Usually, LiBH4 or (to a minor extent) NaBH4 are the preferred reagents due to their commercial availability. However, considering hydrogen storage applications, this kind of synthesis is useful only if the new material has better dehydrogenation kinetics, low dehydrogenation temperature, or better reversibility than the original LiBH4 or NaBH4. This statement is made because, normally, the hydrogen content of the new borohydride decreases compared to LiBH4; thus, other advantages over LiBH4 must be necessarily obtained. Additionally, unless proper separation of other metathesis products is accomplished, a significant decrease of the full mixture’s hydrogen content is unavoidable. The general reaction is:
- 5.
- Metathesis-addition [23]. As described in the next sections, there is a relationship between metal electronegativity and dehydrogenation temperature [30]. Thus, in principle, the production of bimetallic and trimetallic borohydrides opens the way to tune the thermodynamics of dehydrogenation. For this purpose, the metathesis-addition reaction can be a useful tool.
- 6.
- Synthesis using metal hydrides and S(CH3)2⋅BH3. This type of synthesis has evolved mainly for rare-earth (RE) metal borohydrides (RE(BH4)x). The synthesis reaction is preceded by the formation or conditioning of the corresponding metal hydride by mechanical milling. The reaction itself is carried out for a long time (even days of stirring with moderate heating) in toluene. Co-solvents such as dimethyl sulfide (DMS) can be used [13,17,31]. This reaction can be described as a nucleophilic addition mechanism [17]. Finally, extraction of the solvating S(CH3)2 molecules is performed by careful drying [13,31].
3. Bonding and Structure of Metal Borohydrides
4. Transition Metal Borohydrides
4.1. Group 3: Scandium and Yttrium
4.2. Group 4: Titanium, Zirconium, and Hafnium
4.3. Group 5, Vanadium, Niobium and Tantalum
4.4. Group 6: Chromium, Molybdenum and Tungsten
4.5. Group 7: Manganese, Technetium and Rhenium
4.6. Group 8: Iron, Ruthenium, and Osmium
4.7. Group 9: Cobalt, Rhodium, and Iridium
4.8. Group 10: Nickel, Palladium, and Platinum
4.9. Group 11: Copper, Silver, and Gold
4.10. Group 12: Zinc, Cadmium, and Mercury
5. Main-Group Borohydrides
5.1. Group 13: Aluminum, Gallium, Indium, and Thallium
5.2. Group 14: Lead
6. Rare Earth Metal Borohydrides
6.1. Lanthanides
6.2. Actinides
7. Thermodynamics (Thermal Stability)
8. The Boron Problem
9. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, Q.; Sun, Y.; Wang, T.; Modi, P.; Cazorla, C.; Demirci, U.B.; Ramon, J.; Fernandez, A.; Leardini, F. How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Adv. Sustain. Syst. 2019, 1900043, 1–64. [Google Scholar] [CrossRef]
- Chem, G.; Lai, Q. Borohydrides as Solid-State Hydrogen Storage Materials: Past, Current Approaches and Future Perspectives. Gen. Chem. 2018, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Laversenne, L. Synthesis and crystal structure of transition element borohydrides: M(BH4)y, M= Ti, Zr, Hf, Mn, Fe, Cu, Zn, Cd. In Hydrogen Storage Materials; Burzo, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 297–299. [Google Scholar] [CrossRef]
- Paskevicius, M.; Ley, M.B.; Sheppard, D.A.; Jensen, R.; Buckley, C.E. Eutectic melting in metal borohydrides. Phys. Chem. Chem. Phys. 2013, 15, 19774–19789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, Z.; Shi, X.; Zhang, C.; Liu, K.; Zhang, J.; Zhou, L.; Ma, C.; Du, Y. Recent advances on rare earths in solid lithium ion conductors. J. Rare Earths 2021, 39, 1–10. [Google Scholar] [CrossRef]
- Ohno, S.; Banik, A.; Dewald, G.F.; Kraft, M.A.; Krauskopf, T.; Minafra, N.; Till, P.; Weiss, M.; Zeier, W.G. Materials design of ionic conductors for solid state batteries. Prog. Energy 2020, 2, 022001. [Google Scholar] [CrossRef]
- Wegner, W.; Jaroń, T.; Grochala, W. Preparation of a series of lanthanide borohydrides and their thermal decomposition to refractory lanthanide borides. J. Alloys Compd. 2018, 744, 57–63. [Google Scholar] [CrossRef]
- Luo, W.; Huang, Z.; Cai, X.; Niu, R.; Nie, R.; Feng, Q.; Wang, F.; Gan, Z. Microstructure and superconducting properties of MgB2 bulks prepared from Mg + B + Mg(BH4)2 composites. Supercond. Sci. Technol. 2019, 32, 085006. [Google Scholar] [CrossRef]
- Fujii, H.; Ozawa, K. Superconducting properties of PIT-processed MgB2 tapes using Mg(BH4)2 precursor. Supercond. Sci. Technol. 2011, 24, 095009. [Google Scholar] [CrossRef]
- Andrievski, R.A. Nanostructured titanium, zirconium and hafnium diborides: The synthesis, properties, size effects and stability. Russ. Chem. Rev. 2015, 84, 540–554. [Google Scholar] [CrossRef]
- Yang, Y.; Jayaraman, S.; Kim, D.Y.; Girolami, G.S.; Abelson, J.R. CVD growth kinetics of HfB2 thin films from the single-source precursor Hf(BH4)4. Chem. Mater. 2006, 18, 5088–5096. [Google Scholar] [CrossRef]
- Kang, S.-W.; Park, Y.-J.; Kim, Y.-S.; Shin, Y.-H.; Yun, J.-Y. Real-Time Evaluation of Aluminum Borohydride Trimethylamine for Aluminum Chemical Vapor Deposition. J. Electrochem. Soc. 2009, 156, H333. [Google Scholar] [CrossRef]
- Grinderslev, J.B.; Møller, K.T.; Bremholm, M.; Jensen, T.R. Trends in Synthesis, Crystal Structure, and Thermal and Magnetic Properties of Rare-Earth Metal Borohydrides. Inorg. Chem. 2019, 58, 5503–5517. [Google Scholar] [CrossRef] [PubMed]
- Ley, M.B.; Boulineau, S.; Janot, R.; Filinchuk, Y.; Jensen, T.R. New Li ion conductors and solid state hydrogen storage materials: LiM(BH4)3Cl, M = La, Gd. J. Phys. Chem. C 2012, 116, 21267–21276. [Google Scholar] [CrossRef]
- Lyubov, D.M.; Tolpygin, A.O.; Trifonov, A.A. Rare-earth metal complexes as catalysts for ring-opening polymerization of cyclic esters. Coord. Chem. Rev. 2019, 392, 83–145. [Google Scholar] [CrossRef]
- Visseaux, M.; Bonnet, F. Borohydride complexes of rare earths, and their applications in various organic transformations. Coord. Chem. Rev. 2011, 255, 374–420. [Google Scholar] [CrossRef]
- Richter, B.; Grinderslev, J.B.; Møller, K.T.; Paskevicius, M.; Jensen, T.R. From Metal Hydrides to Metal Borohydrides. Inorg. Chem. 2018, 57, 10768–10780. [Google Scholar] [CrossRef]
- Wylezich, T.; Sontakke, A.D.; Castaing, V.; Suta, M.; Viana, B.; Meijerink, A.; Kunkel, N. One Ion, Many Facets: Efficient, Structurally and Thermally Sensitive Luminescence of Eu 2+ in Binary and Ternary Strontium Borohydride Chlorides. Chem. Mater. 2019, 31, 8957–8968. [Google Scholar] [CrossRef] [Green Version]
- Wegner, W.; van Leusen, J.; Majewski, J.; Grochala, W.; Kögerler, P. Borohydride as Magnetic Superexchange Pathway in Late Lanthanide Borohydrides. Eur. J. Inorg. Chem. 2019, 2019, 1776–1783. [Google Scholar] [CrossRef]
- Schouwink, P.; Didelot, E.; Lee, Y.S.; Mazet, T.; Černý, R. Structural and magnetocaloric properties of novel gadolinium borohydrides. J. Alloys Compd. 2016, 664, 378–384. [Google Scholar] [CrossRef]
- Marks, T.J.; Kolb, J.R. Covalent transition metal, lanthanide, and actinide tetrahydroborate complexes. Chem. Rev. 1977, 77, 263–293. [Google Scholar] [CrossRef]
- Černý, R.; Schouwink, P. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2015, 71, 619–640. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal borohydrides and derivatives-synthesis, structure and properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Bannenberg, L.J.; Heere, M.; Benzidi, H.; Montero, J.; Dematteis, E.M.; Suwarno, S.; Jaroń, T.; Winny, M.; Orłowski, P.A.; Wegner, W.; et al. Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. Int. J. Hydrog. Energy 2020, 45, 33687–33730. [Google Scholar] [CrossRef]
- Zanella, P.; Crociani, L.; Masciocchi, N.; Giunchi, G. Facile High-Yield Synthesis of Pure, Crystalline Mg(BH4)2. Inorg. Chem. 2007, 46, 9039–9041. [Google Scholar] [CrossRef] [PubMed]
- Remhof, A.; Yan, Y.; Friedrichs, O.; Kim, J.W.; Mauron, P.; Borgschulte, A.; Wallacher, D.; Buchsteiner, A.; Hoser, A.; Oh, K.H.; et al. Towards room temperature, direct, solvent free synthesis of tetraborohydrides. J. Phys. Conf. Ser. 2012, 340. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, H.; Černý, R. Synthetic approaches to inorganic borohydrides. Dalt. Trans. 2010, 39, 6006. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R. Notizen: Zur Kenntnis der Magnesiumboranat-Bildung. Z. Naturforsch. B 1962, 17, 277–278. [Google Scholar] [CrossRef]
- Jaroń, T.; Orłowski, P.A.; Wegner, W.; Fijałkowski, K.J.; Leszczyński, P.J.; Grochala, W. Hydrogen Storage Materials: Room-Temperature Wet-Chemistry Approach toward Mixed-Metal Borohydrides. Angew. Chemie 2015, 127, 1252–1255. [Google Scholar] [CrossRef]
- Nakamori, Y.; Miwa, K.; Ninomiya, A.; Li, H.; Ohba, N.; Towata, S.I.; Züttel, A.; Orimo, S.I. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 74, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Payandeh Gharibdoust, S.; Heere, M.; Nervi, C.; Sørby, M.H.; Hauback, B.C.; Jensen, T.R. Synthesis, structure, and polymorphic transitions of praseodymium(III) and neodymium(III) borohydride, Pr(BH4)3 and Nd(BH4)3. Dalt. Trans. 2018, 47, 8307–8319. [Google Scholar] [CrossRef]
- Díaz-Torres, R.; Alvarez, S. Coordinating ability of anions and solvents towards transition metals and lanthanides. Dalt. Trans. 2011, 40, 10742. [Google Scholar] [CrossRef]
- Łodziana, Z.; van Setten, M.J. Binding in alkali and alkaline-earth tetrahydroborates: Special position of magnesium tetrahydroborate. Phys. Rev. B 2010, 81, 024117. [Google Scholar] [CrossRef] [Green Version]
- Besora, M.; Lledós, A. Coordination Modes and Hydride Exchange Dynamics in Transition Metal Tetrahydroborate Complexes. In Contemporary Metal Boron Chemistry I; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Callini, E.; Borgschulte, A.; Hugelshofer, C.L.; Ramirez-Cuesta, A.J.; Züttel, A. The Role of Ti in Alanates and Borohydrides: Catalysis and Metathesis. J. Phys. Chem. C 2014, 118, 77–84. [Google Scholar] [CrossRef]
- Chua, Y.S.; Chen, P.; Wu, G.; Xiong, Z. Development of amidoboranes for hydrogen storage. Chem. Commun. 2011, 47, 5116. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, Z. Transition metal tetrahydroborato complexes: An orbital interaction analysis of their structure and bonding. Coord. Chem. Rev. 1996, 156, 139–162. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy. Handb. Vib. Spectrosc. 2006, 1872–1892. [Google Scholar] [CrossRef]
- D’Anna, V.; Spyratou, A.; Sharma, M.; Hagemann, H. FT-IR spectra of inorganic borohydrides. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2014, 128, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.H.; Smith, W.E. Synthesis and characterisation of a tetrahydrofuran derivative of scandium tetrahydroborate. J. Chem. Soc. D Chem. Commun. 1970, 245a. [Google Scholar] [CrossRef]
- Hwang, S.J.; Bowman, R.C.; Reiter, J.W.; Rijssenbeek, J.; Soloveichik, G.L.; Zhao, J.C.; Kabbour, H.; Ahn, C.C. NMR confirmation for formation of [B12H12] 2- complexes during hydrogen desorption from metal borohydrides. J. Phys. Chem. C 2008, 112, 3164–3169. [Google Scholar] [CrossRef]
- Hagemann, H.; Longhini, M.; Kaminski, J.W.; Wesolowski, T.A.; Černý, R.; Penin, N.; Sørby, M.H.; Hauback, B.C.; Severa, G.; Jensen, C.M. LiSc(BH4)4: A novel salt of Li and discrete Sc(BH4)4- Complex anions. J. Phys. Chem. A 2008, 112, 7551–7555. [Google Scholar] [CrossRef] [Green Version]
- Černý, R.; Severa, G.; Ravnsbæk, D.B.; Filinchuk, Y.; D’Anna, V.; Hagemann, H.; Haase, D.; Jensen, C.M.; Jensen, T.R. NaSc(BH4)4: A novel scandium-based borohydride. J. Phys. Chem. C 2010, 114, 1357–1364. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Hwang, S.J.; Bowman, R.C.; Reiter, J.W.; Zan, J.A.; Kulleck, J.G.; Kabbour, H.; Majzoub, E.H.; Ozolins, V. LiSc(BH4)4 as a hydrogen storage material: Multinuclear high-resolution solid-state NMR and first-principles density functional theory studies. J. Phys. Chem. C 2009, 113, 9956–9968. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.D.; Amsler, M.; Botti, S.; Marques, M.A.L.; Goedecker, S. First-principles predicted low-energy structures of NaSc(BH4)4. J. Chem. Phys. 2014, 140. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.W.; Elkedim, O.; Li, X. First principles investigation of scandium-based borohydride NaSc(BH4)4. J. Alloys Compd. 2012, 536, S546–S549. [Google Scholar] [CrossRef]
- Kim, K.C. Validation of the reaction thermodynamics associated with NaSc(BH4)4 from first-principles calculations: Detecting metastable paths and identifying the minimum free energy path. J. Chem. Phys. 2012, 137, 084111. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.C. Crystal structures and thermodynamic investigations of NaSc(BH4)4 from first-principles calculations. Int. J. Quantum Chem. 2013, 113, 119–124. [Google Scholar] [CrossRef]
- Černý, R.; Ravnsbæk, D.B.; Severa, G.; Filinchuk, Y.; D’Anna, V.; Hagemann, H.; Haase, D.; Skibsted, J.; Jensen, C.M.; Jensen, T.R. Structure and characterization of KSc(BH4)4. J. Phys. Chem. C 2010, 114, 19540–19549. [Google Scholar] [CrossRef] [Green Version]
- Starobrat, A.; Jaroń, T.; Grochala, W. Two new derivatives of scandium borohydride, MSc(BH4)4, M = Rb, Cs, prepared: Via a one-pot solvent-mediated method. Dalt. Trans. 2019, 48, 11829–11837. [Google Scholar] [CrossRef]
- Zange, E. Entwicklung eines Mikroverfahrens zur Darstellung von Boranaten der schweren Lanthaniden. Chem. Ber. 1960, 93, 652–657. [Google Scholar] [CrossRef]
- Segal, B.G.; Lippard, S.J. Transition metal hydroborate complexes. 10. Crystal and molecular structure of tris(tetrahydroborato)tris(tetrahydrofuran)yttrium(III). Inorg. Chem. 1978, 17, 844–850. [Google Scholar] [CrossRef]
- Sato, T.; Miwa, K.; Nakamori, Y.; Ohoyama, K.; Li, H.; Noritake, T.; Aoki, M. Experimental and computational studies on solvent-free rare-earth metal borohydrides R(BH4)3 (R = Y, Dy, and Gd). Phys. Rev. B 2008, 3, 1–8. [Google Scholar] [CrossRef]
- Remhof, A.; Borgschulte, A.; Friedrichs, O.; Mauron, P.; Yan, Y.; Züttel, A. Solvent-free synthesis and decomposition of Y(BH4)3. Scr. Mater. 2012, 66, 280–283. [Google Scholar] [CrossRef]
- Park, K.; Lee, H.-S.; Remhof, A.; Lee, Y.-S.; Yan, Y.; Kim, M.-Y.; Kim, S.J.; Züttel, A.; Cho, Y.W. Thermal properties of Y(BH4)3 synthesized via two different methods. Int. J. Hydrog. Energy 2013, 38, 9263–9270. [Google Scholar] [CrossRef]
- Jaroń, T.; Grochala, W. Y(BH4)3 —an old–new ternary hydrogen store akalearning from a multitude of failures. Dalt. Trans. 2010, 39, 160–166. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Filinchuk, Y.; Cern, R.; Jakobsen, H.J.; Jensen, T.R.; Esrf, S.B. Thermal Polymorphism and Decomposition of Y(BH4)3. Inorg. Chem. 2010, 3801–3809. [Google Scholar] [CrossRef] [Green Version]
- Frommen, C.; Aliouane, N.; Deledda, S.; Fonneløp, J.E.; Grove, H.; Lieutenant, K.; Llamas-Jansa, I.; Sartori, S.; Sørby, M.H.; Hauback, B.C. Crystal structure, polymorphism, and thermal properties of yttrium borohydride Y(BH4)3. J. Alloys Compd. 2010, 496, 710–716. [Google Scholar] [CrossRef]
- Yan, Y.; Remhof, A.; Rentsch, D.; Lee, Y.-S.; Whan Cho, Y.; Züttel, A. Is Y2(B12H12)3 the main intermediate in the decomposition process of Y(BH4)3? Chem. Commun. 2013, 49, 5234. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Li, H.W.; Sato, T.; Umeda, N.; Miwa, K.; Towata, S.I.; Orimo, S. Dehydriding and rehydriding properties of yttrium borohydride Y(BH4)3 prepared by liquid-phase synthesis. Int. J. Hydrog. Energy 2009, 34, 5732–5736. [Google Scholar] [CrossRef]
- Lee, Y.S.; Shim, J.H.; Cho, Y.W. Polymorphism and thermodynamics of Y(BH4)3 from first principles. J. Phys. Chem. C 2010, 114, 12833–12837. [Google Scholar] [CrossRef]
- Roedern, E.; Lee, Y.-S.; Ley, M.B.; Park, K.; Cho, Y.W.; Skibsted, J.; Jensen, T.R. Solid state synthesis, structural characterization and ionic conductivity of bimetallic alkali-metal yttrium borohydrides MY(BH4)4 (M = Li and Na). J. Mater. Chem. A 2016, 4, 8793–8802. [Google Scholar] [CrossRef]
- Jaroń, T.; Wegner, W.; Fijałkowski, K.J.; Leszczyński, P.J.; Grochala, W. Facile Formation of Thermodynamically Unstable Novel Borohydride Materials by a Wet Chemistry Route. Chem. A Eur. J. 2015, 21, 5689–5692. [Google Scholar] [CrossRef]
- Dai, J.; Chen, Y.; Xie, R.; Hu, Z.; Song, Y. Influence of alloying elements on the stability and dehydrogenation properties on Y(BH4)3 by first principles calculations. Int. J. Hydrog. Energy 2016, 41, 1662–1671. [Google Scholar] [CrossRef]
- Jaroń, T.; Grochala, W. Probing Lewis acidity of Y(BH4)3 via its reactions with MBH4 (M = Li, Na, K, NMe4). Dalt. Trans. 2011, 40, 12808–12817. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Ley, M.B.; Lee, Y.S.; Hagemann, H.; D’Anna, V.; Cho, Y.W.; Filinchuk, Y.; Jensen, T.R. A mixed-cation mixed-anion borohydride NaY(BH4)2Cl2. Int. J. Hydrog. Energy 2012, 37, 8428–8438. [Google Scholar] [CrossRef]
- Jaroń, T.; Wegner, W.; Grochala, W. M[Y(BH4)4] and M2Li[Y(BH4)6−xClx] (M = Rb, Cs): New borohydride derivatives of yttrium and their hydrogen storage properties. Dalt. Trans. 2013, 42, 6886. [Google Scholar] [CrossRef] [PubMed]
- Sadikin, Y.; Stare, K.; Schouwink, P.; Brix Ley, M.; Jensen, T.R.; Meden, A.; Černý, R. Alkali metal-Yttrium borohydrides: The link between coordination of small and large rare-earth. J. Solid State Chem. 2015, 225, 231–239. [Google Scholar] [CrossRef]
- Schouwink, P.; Ley, M.B.; Tissot, A.; Hagemann, H.; Jensen, T.R.; Smrčok, L.; Černý, R. Structure and properties of complex hydride perovskite materials. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef]
- Łodziana, Z. Multivalent metal tetrahydroborides of Al, Sc, Y, Ti, and Zr. Phys. Rev. B 2010, 81, 144108. [Google Scholar] [CrossRef]
- Dain, C.J.; Downs, A.J.; Goode, M.J.; Evans, D.G.; Nicholls, K.T.; Rankin, D.W.H.; Robertson, H.E. Molecular structure of gaseous titanium tris(tetrahydroborate), Ti(BH4)3: Experimental determination by electron diffraction and molecular orbital analysis of some Ti(BH4)3 derivatives. J. Chem. Soc. Dalt. Trans. 1991, 967. [Google Scholar] [CrossRef]
- Hoekstra, H.R.; Katz, J.J. The Preparation and Properties of the Group IV-B Metal Borohydrides. J. Am. Chem. Soc. 1949, 71, 2488–2492. [Google Scholar] [CrossRef]
- Franz, K.; Fusstetter, H.; Nöth, H. Metallboranate und Boranatometallate. IX [1]; Äther-Addukte von Tris(boranato)-titan(III) und dimere Alkoxy-bis(boranato)-titan(III)-Verbindungen. Z. Anorg. und Allg. Chemie 1976, 427, 97–113. [Google Scholar] [CrossRef]
- Jensen, J.A.; Wilson, S.R.; Girolami, G.S. Titanium(III) tetrahydroborates. Preparation and crystal structure of Ti(BH4)3(PMe3)2 containing an unusual Ti.cntdot..cntdot..cntdot.H.cntdot..cntdot..cntdot.B agostic interaction. J. Am. Chem. Soc. 1988, 110, 4977–4982. [Google Scholar] [CrossRef]
- Fang, Z.Z.; Ma, L.P.; Kang, X.D.; Wang, P.J.; Wang, P.; Cheng, H.M. In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3. Appl. Phys. Lett. 2009, 94, 1–4. [Google Scholar] [CrossRef]
- Callini, E.; Szilágyi, P.Á.; Paskevicius, M.; Stadie, N.P.; Réhault, J.; Buckley, C.E.; Borgschulte, A.; Züttel, A. Stabilization of volatile Ti(BH4)3 by nano-confinement in a metal–organic framework. Chem. Sci. 2016, 7, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Jarid, A.; Lledos, A.; Jean, Y.; Volatron, F. Ab initio study of the coordination modes of tetrahydroborato ligands: Structure of the tris(tetrahydroborato)titanium. Inorg. Chem. 1993, 32, 4695–4699. [Google Scholar] [CrossRef]
- Reid, W.E.; Bish, J.M.; Brenner, A. Electrodeposition of Metals from Organic Solutions. J. Electrochem. Soc. 1957, 104, 21–29. [Google Scholar] [CrossRef]
- Gennari, F.C.; Fernández Albanesi, L.; Rios, I.J. Synthesis and thermal stability of Zr(BH4)4 and Zr(BD4)4 produced by mechanochemical processing. Inorg. Chim. Acta 2009, 362, 3731–3737. [Google Scholar] [CrossRef]
- James, B.D.; Smith, B.E. Convenient, High-Yield Syntheses of Bis(tetrahydroborato)bis(cyclopentadienyl)zirconium(IV) and Tetrakis(tetrahydroborato)zirconium(IV). Synth. React. Inorg. Met. Chem. 1974, 4, 461–465. [Google Scholar] [CrossRef]
- Haaland, A.; Shorokhov, D.J.; Tutukin, A.V.; Volden, H.V.; Swang, O.; McGrady, G.S.; Kaltsoyannis, N.; Downs, A.J.; Tang, C.Y.; Turner, J.F.C. Molecular structures of two metal tetrakis(tetrahydroborates), Zr(BH4)4 and U(BH4)4: Equilibrium conformations and barriers to internal rotation of the triply bridging BH4 groups. Inorg. Chem. 2002, 41, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
- Volkov, V.V.; Myakishev, K.G. Mechanochemical reactions in the chemistry of boranes. Inorg. Chim. Acta 1999, 289, 51–57. [Google Scholar] [CrossRef]
- Rude, L.H.; Corno, M.; Ugliengo, P.; Baricco, M.; Lee, Y.-S.; Cho, Y.W.; Besenbacher, F.; Overgaard, J.; Jensen, T.R. Synthesis and Structural Investigation of Zr(BH4)4. J. Phys. Chem. C 2012, 116, 20239–20245. [Google Scholar] [CrossRef]
- Huang, J.; Tan, Y.; Su, J.; Gu, Q.; Černý, R.; Ouyang, L.; Sun, D.; Yu, X.; Zhu, M. Synthesis, structure and dehydrogenation of zirconium borohydride octaammoniate. Chem. Commun. 2015, 51, 2794–2797. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.F.; Ouyang, L.Z.; Huang, J.M.; Liu, J.W.; Wang, H.; Shao, H.; Zhu, M. Synthesis and hydrogen storage property tuning of Zr(BH4)4·8NH3 via physical vapour deposition and composite formation. Int. J. Hydrog. Energy 2018, 43, 19182–19188. [Google Scholar] [CrossRef]
- Igoshkin, A.M.; Golovnev, I.F.; Krisyuk, V.V.; Igumenov, I.K.; Mechanics, A.; Branch, S.; Branch, S. Structure of Zirconium Tetrahydroborate Zr(BH4)4: A Molecular Dynamics Study. J. Struct. Chem. 2016, 57, 1068–1073. [Google Scholar] [CrossRef]
- Green, J.C.; De Simone, M.; Coreno, M.; Jones, A.; Pritchard, H.M.I.; McGrady, G.S. Electronic structure of M(BH4)4, M = Zr, Hf, and U, by variable photon-energy photoelectron spectroscopy and density functional calculations. Inorg. Chem. 2005, 44, 7781–7793. [Google Scholar] [CrossRef]
- Ehemann, M.; Nöth, H. Metallboranate und Boranatometallate. IV. Boranatokomplexe M(BH4)4+n n- des Zirkoniums, Hafniums und Thoriums. Z. Anorg. und Allg. Chemie 1971, 386, 87–101. [Google Scholar] [CrossRef]
- Jensen, C.M.; Severa, G.; Zhang, S.; Culnane, L.; Langley, W.; Ayabe, R.; Humphries, T.; Setthanan, U.; McGrady, G.S. IV.A.1j Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides. Available online: https://www.hydrogen.energy.gov/pdfs/progress08/iv_a_1j_jensen.pdf (accessed on 12 May 2021).
- Roy, D.K.; Mondal, B.; De, A.; Panda, S.; Ghosh, S. Novel Neutral Zirconaborane [(Cp2Zr)2B5H11]: An arachno -B3H9 Analogue (Cp =η5 -C5H5). Organometallics 2015, 34, 908–912. [Google Scholar] [CrossRef]
- Tamami, B.; Goudarzian, N. Polymer supported ziroconium borohydride: A stable, efficient and regenerable reducing agent. J. Chem. Soc. Chem. Commun. 1994, 1079. [Google Scholar] [CrossRef]
- Borisenko, K.B.; Downs, A.J.; Robertson, H.E.; Rankin, D.W.H.; Tang, C.Y. Molecular structure of Hf(BH4)4 investigated by quantum mechanical calculations and gas-phase electron diffraction. Dalt. Trans. 2004, 967–970. [Google Scholar] [CrossRef]
- Broach, R.W.; Chuang, I.S.; Marks, T.J.; Williams, J.M. Metrical characterization of tridentate tetrahydroborate ligation to a transition-metal ion. Structure and bonding in Hf(BH4)4 by single-crystal neutron diffraction. Inorg. Chem. 1983, 22, 1081–1084. [Google Scholar] [CrossRef]
- Jensen, J.A.; Gozum, J.E.; Pollina, D.M.; Girolami, G.S. Titanium, zirconium, and hafnium tetrahydroborates as “tailored” CVD precursors for metal diboride thin films. J. Am. Chem. Soc. 1988, 110, 1643–1644. [Google Scholar] [CrossRef]
- Wayda, A.L.; Schneemeyer, L.F.; Opila, R.L. Low-temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4). Appl. Phys. Lett. 1988, 53, 361–363. [Google Scholar] [CrossRef]
- Yang, C.H.; Tsai, W.T.; Chang, J.K. Hydrogen desorption behavior of vanadium borohydride synthesized by modified mechano-chemical process. Int. J. Hydrog. Energy 2011, 36, 4993–4999. [Google Scholar] [CrossRef]
- Korablov, D.; Ravnsbæk, D.B.; Ban, V.; Filinchuk, Y.; Besenbacher, F.; Jensen, T.R. Investigation of MBH4-VCl2, M = Li, Na or K. Int. J. Hydrog. Energy 2013, 38, 8376–8383. [Google Scholar] [CrossRef]
- Makhaev, V.D.; Semenenko, K.N. Synthesis and properties of vanadium borohydride complex NaV(BH4)4⋅3DME. Bull. Acad. Sci. USSR Div. Chem. Sci. 1978, 27, 2520–2521. [Google Scholar] [CrossRef]
- Jensen, J.A.; Girolami, G.S. Vanadium(III) tetrahydroborates. Preparation, reaction chemistry, and crystal structures of V(BH4)3(PMe3)2 and the oxo dimer [V(BH4)2(PMe3)2]2O. Inorg. Chem. 1989, 28, 2114–2119. [Google Scholar] [CrossRef]
- Jensen, J.A.; Girolami, G.S. Vanadium tetrahydroborates: Preparation and characterization of V(ŋ2-BH4)3(PMe3)2 and the unusual unidentate BH4− complex V(ŋ1-BH4)2(dmpe)2. J. Am. Chem. Soc. 1988, 110, 4450–4451. [Google Scholar] [CrossRef]
- Hummelshøj, J.S.; Landis, D.D.; Voss, J.; Jiang, T.; Tekin, A.; Bork, N.; Duak, M.; Mortensen, J.J.; Adamska, L.; Andersin, J.; et al. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project. J. Chem. Phys. 2009, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charkin, O.P. Theoretical study of tetrahydroborates and alanates L(MH4)4, HL(MH4)3, H2L(MH4)2, and H3L(MH4) (L = Al, Sc, Ti, V, Cr; M = B, Al). Russ. J. Inorg. Chem. 2009, 54, 951–960. [Google Scholar] [CrossRef]
- Nöth, H. Anorganische Reaktionen der Alkaliboranate. Angew. Chemie 1961, 73, 371–383. [Google Scholar] [CrossRef]
- Suárez-Alcántara, K.; Tena-Garcia, J.R.; Guerrero-Ortiz, R. Alanates, a comprehensive review. Materials 2019, 12, 2724. [Google Scholar] [CrossRef] [Green Version]
- Seitz, M.A.X. Preparation and Characterization of Chromium(II) Tetrahydroborate- Tetrahydrofuran (1/2). J. Chem. Soc. Chem. Commun. 1976, 547, 1976. [Google Scholar]
- Dionne, M.; Hao, S.; Gambarotta, S. Preparation and characterization of a new series of Cr(II) hydroborates. Can. J. Chem. 1995, 73, 1126–1134. [Google Scholar] [CrossRef]
- Nakamori, Y.; Li, H.W.; Matsuo, M.; Miwa, K.; Towata, S.; Orimo, S. Development of metal borohydrides for hydrogen storage. J. Phys. Chem. Solids 2008, 69, 2292–2296. [Google Scholar] [CrossRef]
- Schouwink, P.; D’Anna, V.; Ley, M.B.; Lawson Daku, L.M.; Richter, B.; Jensen, T.R.; Hagemann, H.; Černý, R. Bimetallic borohydrides in the system M(BH4)2-KBH4 (M = Mg, Mn): On the structural diversity. J. Phys. Chem. C 2012, 116, 10829–10840. [Google Scholar] [CrossRef]
- Richter, B.; Ravnsbæk, D.B.; Tumanov, N.; Filinchuk, Y.; Jensen, T.R. Manganese borohydride; Synthesis and characterization. Dalt. Trans. 2015, 44, 3988–3996. [Google Scholar] [CrossRef] [PubMed]
- Tumanov, N.A.; Safin, D.A.; Richter, B.; Łodziana, Z.; Jensen, T.R.; Garcia, Y.; Filinchuk, Y. Challenges in the synthetic routes to Mn(BH4)2: Insight into intermediate compounds. Dalt. Trans. 2015, 44, 6571–6580. [Google Scholar] [CrossRef]
- Tumanov, N.A.; Roedern, E.; Łodziana, Z.; Nielsen, D.B.; Jensen, T.R.; Talyzin, A.V.; Černý, R.; Chernyshov, D.; Dmitriev, V.; Palasyuk, T.; et al. High-Pressure Study of Mn(BH4)2 Reveals a Stable Polymorph with High Hydrogen Density. Chem. Mater. 2016, 28, 274–283. [Google Scholar] [CrossRef]
- Liu, R.; Reed, D.; Book, D. Decomposition behaviour of Mn(BH4)2 formed by ball-milling LiBH4 and MnCl2. J. Alloys Compd. 2012, 515, 32–38. [Google Scholar] [CrossRef]
- Makhaev, V.D.; Borisov, A.P.; Gnilomedova, T.P.; Lobkovskii, É.B.; Chekhlov, A.N. Production of manganese borohydride complexes of manganese solvated with THF, and the structure of Mn(BH4)2 (THF)3. Bull. Acad. Sci. USSR Div. Chem. Sci. 1987, 36, 1582–1586. [Google Scholar] [CrossRef]
- Severa, G.; Hagemann, H.; Longhini, M.; Kaminski, J.W.; Wesolowski, T.A.; Jensen, C.M. Thermal desorption, vibrational spectroscopic, and DFT computational studies of the complex manganese borohydrides Mn(BH4)2 and [Mn(BH4)4]2-. J. Phys. Chem. C 2010, 114, 15516–15521. [Google Scholar] [CrossRef]
- Černý, R.; Penin, N.; Hagemann, H.; Filinchuk, Y. The first crystallographic and spectroscopic characterization of a 3d-Metal borohydride: Mn(BH4)2. J. Phys. Chem. C 2009, 113, 9003–9007. [Google Scholar] [CrossRef] [Green Version]
- Bidabadi, A.S.; Korinek, A.; Botton, G.A.; Varin, R.A. High resolution transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction studies of nanocrystalline manganese borohydride (Mn(BH4)2) after mechano-chemical synthesis and thermal dehydrogenation. Acta Mater. 2015, 100, 392–400. [Google Scholar] [CrossRef]
- Choudhury, P.; Bhethanabotla, V.R.; Stefanakos, E. Manganese borohydride as a hydrogen-storage candidate: First-principles crystal structure and thermodynamic properties. J. Phys. Chem. C 2009, 113, 13416–13424. [Google Scholar] [CrossRef]
- Varin, R.A.; Bidabadi, A.S. The effect of milling energy input during mechano-chemical activation synthesis (MCAS) of the nanocrystalline manganese borohydride (Mn(BH4)2) on its thermal dehydrogenation properties. Int. J. Hydrog. Energy 2014, 39, 11620–11632. [Google Scholar] [CrossRef]
- Zavorotynska, O.; El-Kharbachi, A.; Deledda, S.; Hauback, B.C. Recent progress in magnesium borohydride Mg(BH4)2: Fundamentals and applications for energy storage. Int. J. Hydrog. Energy 2016, 41, 14387–14403. [Google Scholar] [CrossRef] [Green Version]
- Roedern, E.; Jensen, T.R. Thermal decomposition of Mn(BH4)2-M(BH4)x and Mn(BH4)2-MHx composites with M = Li, Na, Mg, and Ca. J. Phys. Chem. C 2014, 118, 23567–23574. [Google Scholar] [CrossRef]
- Pankin, I.A.; Guda, A.A.; Tumanov, N.A.; Filinchuk, Y.; Lomachenko, K.A.; Bugaev, A.L.; Guda, S.A.; Shapovalov, V.V.; Lamberti, C.; Soldatov, A.V. Experimental and theoretical study of hydrogen desorption process from Mn(BH4)2. J. Alloys Compd. 2018, 735, 277–284. [Google Scholar] [CrossRef]
- Varin, R.A.; Zbroniec, L.; Polanski, M.; Filinchuk, Y.; Černý, R. Mechano-chemical synthesis of manganese borohydride (Mn(BH4)2) and inverse cubic spinel (Li2MnCl4) in the (nLiBH4 + MnCl2) (n = 1, 2, 3, 5, 9 and 23) mixtures and their dehydrogenation behavior. Int. J. Hydrog. Energy 2012, 37, 16056–16069. [Google Scholar] [CrossRef]
- Varin, R.A.; Bidabadi, A.S.; Polanski, M.; Biglari, M.; Stobinski, L. The effects of filamentary Ni, graphene and lithium amide (LiNH2) additives on the dehydrogenation behavior of mechano-chemically synthesized crystalline manganese borohydride (Mn(BH4)2) and its solvent filtration/extraction. Mater. Res. Bull. 2018, 100, 394–406. [Google Scholar] [CrossRef]
- Guda, A.A.; Pankin, I.A.; Bugaev, A.L.; Lomachenko, K.A.; Guda, S.A.; Dmitriev, V.P.; Soldatov, A.V. X-ray absorption spectroscopy determination of the products of manganese borohydride decomposition upon heating. Bull. Russ. Acad. Sci. Phys. 2015, 79, 139–143. [Google Scholar] [CrossRef]
- Choudhury, P.; Srinivasan, S.S.; Bhethanabotla, V.R.; Goswami, Y.; McGrath, K.; Stefanakos, E.K. Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate. Int. J. Hydrog. Energy 2009, 34, 6325–6334. [Google Scholar] [CrossRef]
- Fang, F.; Li, Y.T.; Song, Y.; Zha, J.; Zhao, B.; Sun, D.L. LiMn(BH4)3/2LiCl Composite Synthesized by Reactive Ball-Milling and Its Dehydrogenation Properties. Acta Phys. Chim. Sin. 2011, 27, 1537–1542. [Google Scholar] [CrossRef]
- Varin, R.A.; Zbroniec, L. The effects of ball milling and nanometric nickel additive on the hydrogen desorption from lithium borohydride and manganese chloride (3LiBH4 + MnCl2) mixture. Int. J. Hydrog. Energy 2010, 35, 3588–3597. [Google Scholar] [CrossRef]
- Černý, R.; Penin, N.; D’Anna, V.; Hagemann, H.; Durand, E.; Růžička, J. MgxMn(1-x)(BH4)2 (x = 0-0.8), a cation solid solution in a bimetallic borohydride. Acta Mater. 2011, 59, 5171–5180. [Google Scholar] [CrossRef]
- Černý, R.; Schouwink, P.; Sadikin, Y.; Stare, K.; Smrčok, L.; Richter, B.; Jensen, T.R. Trimetallic borohydride Li3MZn5(BH4)15 (M = Mg, Mn) containing two weakly interconnected frameworks. Inorg. Chem. 2013, 52, 9941–9947. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, G.W.; Roscoe, J.S.; Stewart, A.C. The Reduction of Iron(III) Chloride with Lithium Aluminohydride and Lithium Borohydride: Iron(II) Borohydride. J. Am. Soc. 1956, 78, 729–733. [Google Scholar] [CrossRef]
- Varin, R.A.; Bidabadi, A.S. Rapid, ambient temperature hydrogen generation from the solid state Li-B-Fe-H system by mechano-chemical activation synthesis. J. Power Sources 2015, 284, 554–565. [Google Scholar] [CrossRef]
- Varin, R.A.; Shirani Bidabadi, A. Nanostructured, complex hydride systems for hydrogen generation. AIMS Energy 2015, 3, 121–143. [Google Scholar] [CrossRef]
- Stewart, A.C.; Schaeffer, G.W. The reaction of cobalt(II) bromide with lithium borohydride and lithium aluminohydride. J. Inorg. Nucl. Chem. 1956, 3, 194–197. [Google Scholar] [CrossRef]
- Raje, S.; Angamuthu, R. Solvent-free synthesis and reactivity of nickel(II) borohydride and nickel(II) hydride. Green Chem. 2019, 21, 2752–2758. [Google Scholar] [CrossRef]
- Wiberg, E. Zur kenntnis eines kupfer-bor-wasserstoffs CuBH4. Z. Naturforsch. B 1952, 7b, 582. [Google Scholar] [CrossRef] [Green Version]
- Klingen, T.J. The Reaction of Copper(II) Chloride with Lithium Borohydride. Inorg. Chem. 1964, 3, 1058–1059. [Google Scholar] [CrossRef]
- Wiberg, E.; Henle, W. Notizen: Zur Kenntnis eines Silber-bor-wasserstoffs AgBH4. Z. Naturforsch. B 1952, 7, 575–576. [Google Scholar] [CrossRef]
- Wiberg, E. Neuere Ergebnisse der praparativen Hydrid-Forschung. Angew. Chemie 1953, 65, 16–33. [Google Scholar] [CrossRef]
- Musaev, D.G.; Morokuma, K. Does the Tetrahydroborate Species AuBH4 Exist? Ab Initio MO Study of the Structure and Stability of CuBH4, AgBH4, and AuBH4. Organometallics 1995, 14, 3327–3334. [Google Scholar] [CrossRef]
- Wiberg, E.; Henle, W. Notizen: Zur Kenntnis eines ätherlöslichen Zink-bor-wasser-stoffs Zn(BH4)2. Z. Naturforsch. B 1952, 7, 579–580. [Google Scholar] [CrossRef] [Green Version]
- Nöth, H.; Wiberg, E.; Winter, L.P. Boranate und Boranato-metallate. I. Zur Kenntnis von Solvaten des Zinkboranats. Z. Anorg. Allg. Chemie 1969, 370, 209–223. [Google Scholar] [CrossRef]
- Narasimhan, S.; Balakumar, R. Synthetic applications of zinc borohydride. Aldrichimica Acta 1998, 31, 19–26. [Google Scholar]
- Friedrichs, O.; Borgschulte, A.; Kato, S.; Buchter, F.; Gremaud, R.; Remhof, A.; Züttel, A. Low-Temperature Synthesis of LiBH4 by Gas-Solid Reaction. Chem. A Eur. J. 2009, 15, 5531–5534. [Google Scholar] [CrossRef]
- Choudhury, P.; Bhethanabotla, V.R.; Stefanakos, E. Identification of a stable phase for the high-capacity hydrogen-storage material Zn(BH4)2 from density functional theory and lattice dynamics. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77. [Google Scholar] [CrossRef]
- Huan, T.D.; Amsler, M.; Tuoc, V.N.; Willand, A.; Goedecker, S. Low-energy structures of zinc borohydride Zn(BH4)2. Phys. Rev. B Condens. Matter Mater. Phys. 2012, 86, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aidhy, D.S.; Wolverton, C. First-principles prediction of phase stability and crystal structures in Li-Zn and Na-Zn mixed-metal borohydrides. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ravnsbæk, D.; Filinchuk, Y.; Cerenius, Y.; Jakobsen, H.J.; Besenbacher, F.; Skibsted, J.; Jensen, T.R. A series of mixed-metal borohydrides. Angew. Chemie Int. Ed. 2009, 48, 6659–6663. [Google Scholar] [CrossRef] [PubMed]
- Jeon, E.; Cho, Y.W. Mechanochemical synthesis and thermal decomposition of zinc borohydride. J. Alloys Compd. 2006, 422, 273–275. [Google Scholar] [CrossRef]
- Srinivasan, S.; Escobar, D.; Jurczyk, M.; Goswami, Y.; Stefanakos, E. Nanocatalyst doping of Zn(BH4)2 for on-board hydrogen storage. J. Alloys Compd. 2008, 462, 294–302. [Google Scholar] [CrossRef]
- Srinivasan, S.; Escobar, D.; Goswami, Y.; Stefanakos, E. Effects of catalysts doping on the thermal decomposition behavior of Zn(BH4)2. Int. J. Hydrog. Energy 2008, 33, 2268–2272. [Google Scholar] [CrossRef]
- Yang, B.; Li, S.; Wang, H.; Xiang, J.; Yang, Q. Effect of MWCNTs additive on desorption properties of Zn(BH4)2 composite prepared by mechanical alloying. J. Mater. Sci. Technol. 2013, 29, 715–719. [Google Scholar] [CrossRef]
- Nakagawa, T.; Ichikawa, T.; Kojima, Y.; Fujii, H. Gas emission properties of the MgHx-Zn(BH4)2 systems. Mater. Trans. 2007, 48, 556–559. [Google Scholar] [CrossRef] [Green Version]
- Park, H.R.; Kwak, Y.J.; Song, M.Y. Role of the Added Ni in Hydrogen-Storage Reactions of MgH2-Zn(BH4)2-Tm (Ni, Ti, or Fe) Alloys. Mater. Sci. 2018, 24. [Google Scholar] [CrossRef] [Green Version]
- Song, M.Y.; Kwak, Y.J. Comparison of the Hydrogen Release Properties of Zn(BH4)2-Added MgH2 Alloy and Zn(BH4)2 and Ni-Added MgH2 Alloy. Korean J. Met. Mater. 2018, 56. [Google Scholar] [CrossRef]
- Černý, R.; Chul Kim, K.; Penin, N.; D’Anna, V.; Hagemann, H.; Sholl, D.S. AZn2(BH4)5 (A = Li, Na) and NaZn(BH4)3: Structural Studies. J. Phys. Chem. C 2010, 114, 19127–19133. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Frommen, C.; Reed, D.; Filinchuk, Y.; Sørby, M.; Hauback, B.C.; Jakobsen, H.J.; Book, D.; Besenbacher, F.; Skibsted, J.; et al. Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy. J. Alloys Compd. 2011, 509, 698–704. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Filinchuk, Y.; Černý, R.; Jensen, T.R. Powder diffraction methods for studies of borohydride-based energy storage materials. Z. Krist. 2010, 225, 557–569. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wolverton, C. First-principles studies of phase stability and crystal structures in Li-Zn mixed-metal borohydrides. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Li, L.; Guo, Z.; Gu, Q.; Guo, Y.; Yu, X.; Liu, H.; Liu, Z. Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release. J. Mater. Chem. A 2013, 1, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Černý, R.; Ravnsbæk, D.B.; Schouwink, P.; Filinchuk, Y.; Penin, N.; Teyssier, J.; Smrčok, L.; Jensen, T.R. Potassium zinc borohydrides containing triangular [Zn(BH4)3]-and tetrahedral [Zn(BH4)xCl4-x] 2- anions. J. Phys. Chem. C 2012, 116, 1563–1571. [Google Scholar] [CrossRef]
- Albanese, E.; Kalantzopoulos, G.N.; Vitillo, J.G.; Pinatel, E.; Civalleri, B.; Deledda, S.; Bordiga, S.; Hauback, B.C.; Baricco, M. Theoretical and experimental study on Mg(BH4)2-Zn(BH4)2 mixed borohydrides. J. Alloys Compd. 2013, 580, S282–S286. [Google Scholar] [CrossRef] [Green Version]
- Kalantzopoulos, G.N.; Vitillo, J.G.; Albanese, E.; Pinatel, E.; Civalleri, B.; Deledda, S.; Bordiga, S.; Baricco, M.; Hauback, B.C. Hydrogen storage of Mg-Zn mixed metal borohydrides. J. Alloys Compd. 2014, 615, S702–S705. [Google Scholar] [CrossRef] [Green Version]
- Albanese, E.; Civalleri, B.; Casassa, S.; Baricco, M. Investigation on the decomposition enthalpy of novel mixed Mg(1-x)Znx(BH4)2 borohydrides by means of periodic DFT calculations. J. Phys. Chem. C 2014, 118, 23468–23475. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Sørensen, L.H.; Filinchuk, Y.; Reed, D.; Book, D.; Jakobsen, H.J.; Besenbacher, F.; Skibsted, J.; Jensen, T.R. Mixed-anion and mixed-cation borohydride KZn(BH4)Cl2: Synthesis, structure and thermal decomposition. Eur. J. Inorg. Chem. 2010, 1608–1612. [Google Scholar] [CrossRef] [Green Version]
- Wiberg, E.; Henle, W. Zur Kenntnis eines Cadmium-bor-wasserstoffs Cd(BH4)2. Z. Naturforschg. B 1952, 7, 582. [Google Scholar] [CrossRef] [Green Version]
- Nöth, H.; Winter, L.P. Metallboranate und Boranato-metallate. V. Solvate des Cadmiumboranats und Boranatocadmate. Z. Anorg. Allg. Chemie 1972, 389, 225–234. [Google Scholar] [CrossRef]
- Ravnsbaek, D.B.; Sørensen, L.H.; Filinchuk, Y.; Besenbacher, F.; Jensen, T.R. Screening of Metal Borohydrides by Mechanochemistry and Diffraction. Angew. Chemie Int. Ed. 2012, 51, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, D.; Zatti, M.; Vegge, T. Analysis of the decomposition gases from α and β-Cd(BH4)2 synthesized by temperature controlled mechanical milling. J. Alloys Compd. 2013, 547, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Nöth, H.; Thomann, M. Metal Tetrahydroborates and Tetrahydroborato Metalates, 17/Bonding in Cadmium Bis(tetrahydroborate), and the Reaction with Lithium Tetrahydroborate. Z. Naturforsch. B 1990, 45, 1482–1486. [Google Scholar] [CrossRef] [Green Version]
- Linti, G.; Nöth, H.; Thomann, M. Metal Tetrahydroborates and Tetrahydroborato Metalates, 15 [1] An 11B and 113Cd NMR Study of MBH4-CdCl2 Systems in Dimethylformamide and the X-Ray Structure of CdCl2⋅2 DMF. Z. Naturforsch. Sect. B J. Chem. Sci. 1990, 45, 1463–1471. [Google Scholar] [CrossRef]
- Nöth, H.; Thomann, M. Metal Tetrahydroborates and Tetrahydroboratometalates, 18 [1] Studies on the Formation of Cadmium(II)-tetrahydroborates with Tetrahydroborate and Iodide. Z. Naturforsch. Sect. B J. Chem. Sci. 1994, 49, 9–14. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Sanderson, R.T.; Burg, A.B. A Volatile Compound of Aluminum, Boron and Hydrogen. J. Am. Chem. Soc. 1939, 61, 536. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Sanderson, R.T.; Burg, A.B. Metallo Borohydrides. I. Aluminum Borohydride. J. Am. Chem. Soc. 1940, 62, 3421–3425. [Google Scholar] [CrossRef]
- Rulon, R.M.; Mason, L.S. The Heat of Formation of Aluminum Borohydride. J. Am. Chem. Soc. 1951, 73, 5491–5493. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Brown, H.C.; Hyde, E.K. The Preparation of Other Borohydrides by Metathetical Reactions Utilizing the Alkali Metal Borohydrides. J. Am. Chem. Soc. 1953, 75, 209–213. [Google Scholar] [CrossRef]
- Aldridge, S.; Blake, A.J.; Downs, A.J.; Gould, R.O.; Parsons, S.; Pulham, C.R. Some tetrahydroborate derivatives of aluminium: Crystal structures of dimethylaluminium tetrahydroborate and the α and β phases of aluminium tris(tetrahydroborate) at low temperature. J. Chem. Soc. Dalt. Trans. 1997, 1007–1012. [Google Scholar] [CrossRef]
- Almenningen, A.; Gundersen, G.; Haaland, A.; Haug, A.; Enzell, C.; Francis, G. On the Molecular Structure of Aluminium Borohydride, Al(BH4)3. Acta Chem. Scand. 1968, 22, 328–334. [Google Scholar] [CrossRef]
- Bauer, S.H.; Bauer, S.H. The Structure of the Hydrides of Boron. VI. AlB3H12. J. Am. Chem. Soc. 1940, 62, 3440–3442. [Google Scholar]
- Coe, D.A.; Nibler, J.W. Infrared and Raman spectra of aluminum borohydride, Al(BH4)3. Spectrochim. Acta Part A Mol. Spectrosc. 1973, 29, 1789–1804. [Google Scholar] [CrossRef]
- Al-Kahtani, A.; Williams, D.L.; Nibler, J.W.; Sharpe, S.W. High-resolution infrared studies of Al(BH4)3 and Al(BD4)3. J. Phys. Chem. A 1998, 102, 537–544. [Google Scholar] [CrossRef]
- Miwa, K.; Ohba, N.; Towata, S.I.; Nakamori, Y.; Züttel, A.; Orimo, S. Ichi First-principles study on thermodynamical stability of metal borohydrides: Aluminum borohydride Al(BH4)3. J. Alloys Compd. 2007, 446–447, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Harrison, D.; Thonhauser, T. Suppressing diborane production during the hydrogen release of metal borohydrides: The example of alloyed Al(BH4)3. Int. J. Hydrog. Energy 2016, 41, 3571–3578. [Google Scholar] [CrossRef] [Green Version]
- Paduani, C.; Wu, M.M.; Willis, M.; Jena, P. Theoretical study of the stability and electronic structure of Al(BH4)n=1→4 and Al(BF4)n=1→4 and their hyperhalogen behavior. J. Phys. Chem. A 2011, 115, 10237–10243. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Safin, D.A.; Tumanov, N.A.; Morelle, F.; Moulai, A.; Černý, R.; Łodziana, Z.; Devillers, M.; Filinchuk, Y. Solid Aluminum Borohydrides for Prospective Hydrogen Storage. ChemSusChem 2017, 10, 4725–4734. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Ban, V.; Sadikin, Y.; Černý, R.; Aranda, L.; Casati, N.; Devillers, M.; Filinchuk, Y. The first halide-free bimetallic aluminum borohydride: Synthesis, structure, stability, and decomposition pathway. J. Phys. Chem. C 2014, 118, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Lindemann, I.; Ferrer, R.D.; Dunsch, L.; Filinchuk, Y.; Černý, R.; Hagemann, H.; D’Anna, V.; Daku, L.M.L.; Schultz, L.; Gutfleisch, O. Al3Li4(BH4)13: A complex double-cation borohydride with a new structure. Chem. A Eur. J. 2010, 16, 8707–8712. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, I.; Borgschulte, A.; Callini, E.; Züttel, A.; Schultz, L.; Gutfleisch, O. Insight into the decomposition pathway of the complex hydride Al3Li4(BH4)13. Int. J. Hydrog. Energy 2013, 38, 2790–2795. [Google Scholar] [CrossRef]
- Knight, D.A.; Zidan, R.; Lascola, R.; Mohtadi, R.; Ling, C.; Sivasubramanian, P.; Kaduk, J.A.; Hwang, S.J.; Samanta, D.; Jena, P. Synthesis, characterization, and atomistic modeling of stabilized highly pyrophoric Al(BH4)3 via the formation of the hypersalt K[Al(BH4)4]. J. Phys. Chem. C 2013, 117, 19905–19915. [Google Scholar] [CrossRef] [Green Version]
- Downs, A.J.; Thomas, P.D.P. Gallium borohydrides: The synthesis and properties of HGa(BH4)2. J. Chem. Soc. Chem. Commun. 1976, 825. [Google Scholar] [CrossRef]
- Pulham, C.R.; Brain, P.T.; Downs, A.J.; Rankin, D.W.H.; Robertson, H.E. Gallaborane, H2Ga(µ-H)2BH2: Synthesis, properties, and structure of the gaseous molecule as determined by electron diffraction. J. Chem. Soc., Chem. Commun. 1990, 177–178. [Google Scholar] [CrossRef]
- Barlow, M.T.; Dain, C.J.; Downs, A.J.; Laurenson, G.S.; Rankin, D.W.H. Group 3 tetrahydroborates. Part 4. The molecular structure of hydridogallium bis(tetrahydroborate) in the gas phase as determined by electron diffraction. J. Chem. Soc. Dalt. Trans. 1982, 597. [Google Scholar] [CrossRef]
- Downs, A.J.; Harman, L.A.; Thomas, P.D.P.; Pulham, C.R. Hydridogallium bis(tetrahydroborate), HGa(BH4)2: Synthesis and properties. Polyhedron 1995, 14, 935–945. [Google Scholar] [CrossRef]
- Wiberg, E.; Nöth, H. Notizen: Über Wasserstoff-Verbindungen des Indiums. Z. Naturforsch. B 1957, 12, 59–60. [Google Scholar] [CrossRef]
- Wiberg, E.; Dittmann, O.; Nöth, H.; Schmidt, M. Notizen: Über Wasserstoff-Verbindungen des Thalliums. V. Zur Kenntnis eines Thallium(I)-boranats TlBH4 und Thallium(I)-alanats TlAlH4. Z. Naturforsch. B 1957, 12, 62–63. [Google Scholar] [CrossRef]
- Wiberg, E.; Nöth, H. Notizen: Über Wasserstoff-Verbindungen des Thalliums. VI. Zur Kenntnis eines Thallium(III)-boranats TlCl(BH4)2. Z. Naturforsch. B 1957, 12, 63–65. [Google Scholar] [CrossRef]
- Stadie, N.P.; Callini, E.; Richter, B.; Jensen, T.R.; Borgschulte, A.; Züttel, A. Supercritical N2 processing as a route to the clean dehydrogenation of porous Mg(BH4)2. J. Am. Chem. Soc. 2014, 136, 8181–8184. [Google Scholar] [CrossRef]
- Frommen, C.; Sørby, M.; Heere, M.; Humphries, T.; Olsen, J.; Hauback, B. Rare Earth Borohydrides—Crystal Structures and Thermal Properties. Energies 2017, 10, 2115. [Google Scholar] [CrossRef] [Green Version]
- Olsen, J.E.; Frommen, C.; Sørby, M.H.; Hauback, B.C. Crystal structures and properties of solvent-free LiYb(BH4)4-xClx, Yb(BH4)3 and Yb(BH4)2-xClx. RSC Adv. 2013, 3, 10764–10774. [Google Scholar] [CrossRef]
- Zhang, B.J.; Liu, B.H.; Li, Z.P. Destabilization of LiBH4 by (Ce, La)(Cl, F)3 for hydrogen storage. J. Alloys Compd. 2011, 509, 751–757. [Google Scholar] [CrossRef]
- Ley, M.B.; Jørgensen, M.; Černý, R.; Filinchuk, Y.; Jensen, T.R. From M(BH4)3 (M = La, Ce) Borohydride Frameworks to Controllable Synthesis of Porous Hydrides and Ion Conductors. Inorg. Chem. 2016, 55, 9748–9756. [Google Scholar] [CrossRef]
- GharibDoust, S.H.P.; Brighi, M.; Sadikin, Y.; Ravnsbæk, D.B.; Černý, R.; Skibsted, J.; Jensen, T.R. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I. J. Phys. Chem. C 2017, 121, 19010–19021. [Google Scholar] [CrossRef]
- Payandeh Gharibdoust, S.; Heere, M.; Sørby, M.H.; Ley, M.B.; Ravnsbæk, D.B.; Hauback, B.C.; Černý, R.; Jensen, T.R. Synthesis, structure and properties of new bimetallic sodium and potassium lanthanum borohydrides. Dalt. Trans. 2016, 45, 19002–19011. [Google Scholar] [CrossRef] [PubMed]
- Brighi, M.; Schouwink, P.; Sadikin, Y.; Černý, R. Fast ion conduction in garnet-type metal borohydrides Li3K3Ce2(BH4)12 and Li3K3La2(BH4)12. J. Alloys Compd. 2016, 662, 388–395. [Google Scholar] [CrossRef]
- Payandeh Gharibdoust, S.; Ravnsbæk, D.B.; Černý, R.; Jensen, T.R. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd. Dalt. Trans. 2017, 46, 13421–13431. [Google Scholar] [CrossRef] [PubMed]
- Gennari, F.C.; Esquivel, M.R. Synthesis and dehydriding process of crystalline Ce(BH4)3. J. Alloys Compd. 2009, 485, 47–51. [Google Scholar] [CrossRef]
- Luo, X.; Aguey-Zinsou, K.-F. Correlations between the ionic conductivity and cation size in complex borohydrides. Ionics 2020, 26, 5287–5291. [Google Scholar] [CrossRef]
- Wu, H. Strategies for the Improvement of the Hydrogen Storage Properties of Metal Hydride Materials. ChemPhysChem 2008, 9, 2157–2162. [Google Scholar] [CrossRef]
- Davies, R.A.; Hewett, D.R.; Anderson, P.A. Enhancing ionic conductivity in lithium amide for improved energy storage materials. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 6, 015005. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.A.; Chater, P.A.; Hewett, D.R.; Slater, P.R. Hydrogen storage and ionic mobility in amide–halide systems. Faraday Discuss. 2011, 151, 271. [Google Scholar] [CrossRef] [PubMed]
- Gennari, F.C.; Albanesi, L.F.; Puszkiel, J.A.; Larochette, P.A. Reversible hydrogen storage from 6LiBH4-MCl3 (M = Ce, Gd) composites by in-situ formation of MH2. Int. J. Hydrog. Energy 2011, 36, 563–570. [Google Scholar] [CrossRef]
- Heere, M.; Payandeh GharibDoust, S.H.; Frommen, C.; Humphries, T.D.; Ley, M.B.; Sørby, M.H.; Jensen, T.R.; Hauback, B.C. The influence of LiH on the rehydrogenation behavior of halide free rare earth (RE) borohydrides (RE = Pr, Er). Phys. Chem. Chem. Phys. 2016, 18, 24387–24395. [Google Scholar] [CrossRef] [Green Version]
- Humphries, T.D.; Ley, M.B.; Frommen, C.; Munroe, K.T.; Jensen, T.R.; Hauback, B.C. Crystal structure and in situ decomposition of Eu(BH4)2 and Sm(BH4)2. J. Mater. Chem. A 2015, 3, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Møller, K.T.; Jørgensen, M.; Fogh, A.S.; Jensen, T.R. Perovskite alkali metal samarium borohydrides: Crystal structures and thermal decomposition. Dalt. Trans. 2017, 46, 11905–11912. [Google Scholar] [CrossRef]
- Olsen, J.E.; Frommen, C.; Jensen, T.R.; Riktor, M.D.; Sørby, M.H.; Hauback, B.C. Structure and thermal properties of composites with RE-borohydrides (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb or Lu) and LiBH4. RSC Adv. 2014, 4, 1570–1582. [Google Scholar] [CrossRef]
- Sharma, M.; Didelot, E.; Spyratou, A.; Lawson Daku, L.M.; Černý, R.; Hagemann, H. Halide Free M(BH4)2 (M = Sr, Ba, and Eu) Synthesis, Structure, and Decomposition. Inorg. Chem. 2016, 55, 7090–7097. [Google Scholar] [CrossRef]
- Rossmanith, K. Herstellung von Europium(II)-bromid-boranat. Monatshefte für Chemie 1966, 97, 863–865. [Google Scholar] [CrossRef]
- Borisov, V.D.; Makahaev, A.P. tetrahydridoborates of divalent Samarium, Europium, and Ytterbium. Russ. J. Inorg. Chem. 1999, 44, 1411–1413. [Google Scholar]
- Andrade-Gamboa, J.; Puszkiel, J.A.; Fernández-Albanesi, L.; Gennari, F.C. A novel polymorph of gadolinium tetrahydroborate produced by mechanical milling. Int. J. Hydrog. Energy 2010, 35, 10324–10328. [Google Scholar] [CrossRef]
- Ley, M.B.; Paskevicius, M.; Schouwink, P.; Richter, B.; Sheppard, D.A.; Buckley, C.E.; Jensen, T.R. Novel solvates M(BH4)3S(CH3)2 and properties of halide-free M(BH4)3 (M = y or Gd). Dalt. Trans. 2014, 43, 13333–13342. [Google Scholar] [CrossRef] [Green Version]
- Wegner, W.; Jaroń, T.; Grochala, W. Polymorphism and hydrogen discharge from holmium borohydride, Ho(BH4)3, and KHo(BH4)4. Int. J. Hydrog. Energy 2014, 39, 20024–20030. [Google Scholar] [CrossRef]
- Wegner, W.; Jaroń, T.; Grochala, W. MYb(BH4)4 (M = K, Na) from laboratory X-ray powder data. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2013, 69, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Banks, R.H.; Edelstein, N.M. Synthesis and Characterization of Protactinium(IV), Neptunium(IV), and Plutonium (IV) Borohydrides. In Lanthanide and Actinide Chemistry and Spectroscopy; American Chemical Society Publications: Washington, DC, USA, 1980; pp. 331–348. [Google Scholar] [CrossRef]
- Rajnak, K.; Gamp, E.; Shinomoto, R.; Edelstein, N. Optical and magnetic properties of uranium borohydride and tetrakismethylborohydride. J. Chem. Phys. 1984, 80, 5942–5950. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, E.R.; Hamilton, W.C.; Keiderling, T.A.; La Placa, S.J.; Lippard, S.J.; Mayerle, J.J. 14-Coordinate uranium(IV). Structure of uranium borohydride by single-crystal neutron diffraction. Inorg. Chem. 1972, 11, 3009–3016. [Google Scholar] [CrossRef]
- Banks, R.H.; Edelstein, N.M.; Rietz, R.R.; Templeton, D.H.; Zalkin, A. Preparation and properties of the actinide borohydrides: Protactinium(IV), neptunium(IV), and plutonium(IV) borohydrides. J. Am. Chem. Soc. 1978, 100, 1957–1958. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Brown, H.C. Uranium(IV) Borohydride 1. J. Am. Chem. Soc. 1953, 75, 219–221. [Google Scholar] [CrossRef]
- Bernstein, E.R.; Keiderling, T.A. Optical and magnetic resonance spectra of inorganic molecular crystals-uranium borohydride [U(BH4)4] in hafnium borohydride [Hf(BH4)4]. J. Chem. Phys. 1973, 59, 2105–2122. [Google Scholar] [CrossRef]
- Ghiassee, N.; Clay, P.G.; Walton, G.N. Photolytic decomposition of uranium tetrahydroborate vapour, U(BH4)4. Inorg. Nucl. Chem. Lett. 1980, 16, 149–153. [Google Scholar] [CrossRef]
- Ghiassee, N.; Clay, P.G.; Walton, G.N. Thermal decomposition of U(BH4)4. J. Inorg. Nucl. Chem. 1981, 43, 2909–2913. [Google Scholar] [CrossRef]
- Paine, R.T.; Schonberg, P.R.; Light, R.W.; Danen, W.C.; Freund, S.M. Photochemistry of U(BH4)4 and U(BD4)4. J. Inorg. Nucl. Chem. 1979, 41, 1577–1578. [Google Scholar] [CrossRef]
- Rajnak, K.; Banks, R.H.; Gamp, E.; Edelstein, N. Analysis of the optical spectrum of Np(BD4)4 diluted in Zr(BD4)4 and the magnetic properties of Np(BH4)4 and Np(BH3CH3)4. J. Chem. Phys. 1984, 80, 5951–5962. [Google Scholar] [CrossRef] [Green Version]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Li, H.W.; Orimo, S.; Nakamori, Y.; Miwa, K.; Ohba, N.; Towata, S.; Züttel, A. Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities. J. Alloys Compd. 2007, 446–447, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Błoński, P.; Łodziana, Z. Correlation between the ionic potential and thermal stability of metal borohydrides: First-principles investigations. Phys. Rev. B 2014, 90, 054114. [Google Scholar] [CrossRef]
- Łodziana, Z.; Błoński, P.; Yan, Y.; Rentsch, D.; Remhof, A. NMR Chemical Shifts of 11 B in Metal Borohydrides from First-Principle Calculations. J. Phys. Chem. C 2014, 118, 6594–6603. [Google Scholar] [CrossRef]
- Mauron, P.; Buchter, F.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Zwicky, C.N.; Züttel, A. Stability and reversibility of LiBH4. J. Phys. Chem. B 2008, 112, 906–910. [Google Scholar] [CrossRef]
- Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.; Sudan, P.; Mauron, P.; Emmenegger, C. Hydrogen storage properties of LiBH4. J. Alloys Compd. 2003, 356–357, 515–520. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhou, H.; Gao, S.; Ge, H.; Li, S.; Yan, M. Improved hydrogen desorption properties of LiBH4 by AlH3 addition. Int. J. Hydrog. Energy 2016, 41, 22118–22127. [Google Scholar] [CrossRef]
- Zhang, B.J.; Liu, B.H. Hydrogen desorption from LiBH4 destabilized by chlorides of transition metal Fe, Co, and Ni. Int. J. Hydrog. Energy 2010, 35, 7288–7294. [Google Scholar] [CrossRef]
- Yu, X.B.; Grant, D.M.; Walker, G.S. Dehydrogenation of LiBH4 Destabilized with Various Oxides. J. Phys. Chem. C 2009, 113, 17945–17949. [Google Scholar] [CrossRef]
- Ngene, P.; van den Berg, R.; Verkuijlen, M.H.W.; de Jong, K.P.; de Jongh, P.E. Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy Environ. Sci. 2011, 4, 4108. [Google Scholar] [CrossRef] [Green Version]
- Martelli, P.; Caputo, R.; Remhof, A.; Mauron, P.; Borgschulte, A.; Züttel, A. Stability and decomposition of NaBH4. J. Phys. Chem. C 2010, 114, 7173–7177. [Google Scholar] [CrossRef]
- Mao, J.; Guo, Z.; Nevirkovets, I.P.; Liu, H.K.; Dou, S.X. Hydrogen De-/Absorption Improvement of NaBH4 Catalyzed by Titanium-Based Additives. J. Phys. Chem. C 2012, 116, 1596–1604. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.F.; Yu, X.B.; Guo, Z.P.; Liu, H.K.; Wu, Z.; Ni, J. Enhanced hydrogen storage performances of NaBH4-MgH2 system. J. Alloys Compd. 2009, 479, 619–623. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, A.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. Study on the thermal decomposition of NaBH4 catalyzed by ZrCl4. Int. J. Hydrog. Energy 2017, 42, 22432–22437. [Google Scholar] [CrossRef]
- Mao, J.F.; Yu, X.B.; Guo, Z.P.; Poh, C.K.; Liu, H.K.; Wu, Z.; Ni, J. Improvement of the LiAlH4-NaBH4 system for reversible hydrogen storage. J. Phys. Chem. C 2009, 113, 10813–10818. [Google Scholar] [CrossRef]
- Kumar, S.; Kojima, Y.; Dey, G.K. Synergic effect of ZrCl4 on thermal dehydrogenation kinetics of KBH4. J. Alloys Compd. 2017, 718, 134–138. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Santoru, A.; Poletti, M.G.; Pistidda, C.; Klassen, T.; Dornheim, M.; Baricco, M. Phase stability and hydrogen desorption in a quinary equimolar mixture of light-metals borohydrides. Int. J. Hydrog. Energy 2018, 43, 16793–16803. [Google Scholar] [CrossRef]
- Ley, M.B.; Roedern, E.; Jensen, T.R. Eutectic melting of LiBH4 –KBH4. Phys. Chem. Chem. Phys. 2014, 16, 24194–24199. [Google Scholar] [CrossRef]
- Züttel, A.; Borgschulte, A.; Orimo, S.I. Tetrahydroborates as new hydrogen storage materials. Scr. Mater. 2007, 56, 823–828. [Google Scholar] [CrossRef]
- Newhouse, R.J.; Stavila, V.; Hwang, S.-J.; Klebanoff, L.E.; Zhang, J.Z. Reversibility and Improved Hydrogen Release of Magnesium Borohydride. J. Phys. Chem. C 2010, 114, 5224–5232. [Google Scholar] [CrossRef] [Green Version]
- Soloveichik, G.; Gao, Y.; Rijssenbeek, J.; Andrus, M.; Kniajanski, S.; Bowmanjr, R.; Hwang, S.; Zhao, J. Magnesium borohydride as a hydrogen storage material: Properties and dehydrogenation pathway of unsolvated Mg(BH4)2. Int. J. Hydrog. Energy 2009, 34, 916–928. [Google Scholar] [CrossRef]
- Matsunaga, T.; Buchter, F.; Miwa, K.; Towata, S.; Orimo, S.; Züttel, A. Magnesium borohydride: A new hydrogen storage material. Renew. Energy 2008, 33, 193–196. [Google Scholar] [CrossRef]
- Dematteis, E.M.; Baricco, M. Hydrogen Desorption in Mg(BH4)2-Ca(BH4)2 System. Energies 2019, 12, 3230. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Wu, G.; Zhang, Y.; Xiong, Z.; Guo, J.; He, T.; Chen, P. Improved dehydrogenation properties of calcium borohydride combined with alkaline-earth metal amides. J. Phys. Chem. C 2011, 115, 18035–18041. [Google Scholar] [CrossRef]
- Comănescu, C.; Capurso, G.; Maddalena, A. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage. Nanotechnology 2012, 23, 385401. [Google Scholar] [CrossRef]
- Rönnebro, E.; Majzoub, E.H. Calcium borohydride for hydrogen storage: Catalysis and reversibility. J. Phys. Chem. B 2007, 111, 12045–12047. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Wu, G.; Xiong, Z.; Guo, J.; He, T.; Chen, P. Structure and Hydrogen Storage Properties of Calcium Borohydride Diammoniate. Chem. Mater. 2010, 22, 6021–6028. [Google Scholar] [CrossRef]
- Ravnsbæk, D.B.; Nickels, E.A.; Černý, R.; Olesen, C.H.; David, W.I.F.; Edwards, P.P.; Filinchuk, Y.; Jensen, T.R. Novel Alkali Earth Borohydride Sr(BH4)2 and Borohydride-Chloride Sr(BH4)Cl. Inorg. Chem. 2013, 52, 10877–10885. [Google Scholar] [CrossRef] [PubMed]
- Wiberg, E.; Nöth, H.; Hartwimmer, R. Notizen: Zur Kenntnis von Erdalkaliboranaten Me[BH4]2. Z. Naturforsch. B 1955, 10, 292–294. [Google Scholar] [CrossRef]
- Borgschulte, A.; Callini, E.; Probst, B.; Jain, A.; Kato, S.; Friedrichs, O.; Remhof, A.; Bielmann, M.; Ramirez-Cuesta, A.J.; Züttel, A. Impurity gas analysis of the decomposition of complex hydrides. J. Phys. Chem. C 2011, 115, 17220–17226. [Google Scholar] [CrossRef]
- Callini, E.; Borgschulte, A.; Ramirez-cuesta, J.; Züttel, A. Diborane release and structure distortion in borohydrides. Dalton Trans. 2012, 2, 719–725. [Google Scholar] [CrossRef]
- Pitt, M.P.; Paskevicius, M.; Brown, D.H.; Sheppard, D.A.; Buckley, C.E. Thermal stability of Li2B12H12 and its role in the decomposition of LiBH4. J. Am. Chem. Soc. 2013, 135, 6930–6941. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, O.; Remhof, A.; Hwang, S.J.; Züttel, A. Role of Li2B12H12 for the formation and decomposition of LiBH4. Chem. Mater. 2010, 22, 3265–3268. [Google Scholar] [CrossRef]
- Her, J.H.; Yousufuddin, M.; Zhou, W.; Jalisatgi, S.S.; Kulleck, J.G.; Zan, J.A.; Hwang, S.J.; Bowman, R.C.; Udovic, T.J. Crystal structure of Li2B12H12: A possible intermediate species in the decomposition of LiBH4. Inorg. Chem. 2008, 47, 9757–9759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beall, H.; Gaines, D.F. Mechanistic aspects of boron hydride reactions. Inorg. Chim. Acta 1999, 289, 1–10. [Google Scholar] [CrossRef]
- Grahame, A.; Aguey-Zinsou, K.F. Properties and applications of metal (M) dodecahydro-closo-dodecaborates (Mn=1,2B12H12) and their implications for reversible hydrogen storage in the borohydrides. Inorganics 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Černý, R.; Brighi, M.; Murgia, F. The Crystal Chemistry of Inorganic Hydroborates. Chemistry 2020, 2, 805–826. [Google Scholar] [CrossRef]
- Wong, S.S.; Li, W.K.; Paddon-Row, M.N. On the structure and stability of the AlH4 radical and its potential energy surface for rearrangement and dissociation: An ab initio MO study. J. Mol. Struct. Theochem 1991, 226, 285–301. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Dornheim, M.; Bormann, R. Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J. Alloys Compd. 2007, 440, 18–21. [Google Scholar] [CrossRef]
- Gennari, F.C. Improved hydrogen storage reversibility of LiBH4 destabilized by Y(BH4)3 and YH3. Int. J. Hydrog. Energy 2012, 37, 18895–18903. [Google Scholar] [CrossRef]
- Liu, X.; Peaslee, D.; Jost, C.Z.; Baumann, T.F.; Majzoub, E.H. Systematic Pore-Size Effects of Nanoconfinement of LiBH4: Elimination of Diborane Release and Tunable Behavior for Hydrogen Storage Applications. Chem. Mater. 2011, 23, 1331–1336. [Google Scholar] [CrossRef]
Coordination Modes of [BH4]−1 | Frequency [cm−1] and Type of Vibration |
---|---|
η1 | 2300–2450: B-H(terminal) stretching ~2000: B-H(bridge) stretching ~2000–1700: M-H(bridge) stretching 1000–1150: BH3 deformation |
η2 | 2400–2600: B-H(terminal) stretching 1650–2150: B-H(bridge) stretching 1300–1500: Bridge stretching 1100–1200: BH2 deformation |
η3 | 2450–2600: B-H(terminal) stretching 2100–2200: B-H(bridge) stretching 1200–1250: Bridge deformation data |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Reference and Comments |
---|---|---|---|
Sc(BH4)3, 13.51 | Space group: trigonal R-3 (148) a = b = 7.262; c = 18.194 α = β = 90; γ = 120 | Sc: 0, 0, 0.3210. B: 0.3503, 0.3123, 0.4079. H1: 0.4002, 0.3671, 0.3423. H2: 0.3691, 0.4611, 0.4432. H3: 0.1636, 0.1647, 0.4130. H4: 0.4588, 0.2370, 0.4329 | Theoretical calculation [30] |
Space group: orthorhombic C2221 (20) a = 8.34, b = 11.94; c = 7.90 α = β = γ = 90 | Sc: 0.1882, 0, 0. B1: 0.3254, 0.1593, 0.9642. B2: 0.5, 0.4978, 0.25. H1: 0.4045, 0.2411, 0.9457. H2: 0.3191, 0.0983, 0.8355. H3: 0.3770, 0.0950, 0.0770. H4: 0.1854, 0.1775, 0.0036. H5: 0.1167, 0.0597, 0.2407. H6: 0.5192, 0.4369, 0.3732 | Theoretical calculation [44] | |
LiSc(BH4)4 14.49 | Space group: tetragonal P-42c (112) a = b = 6.0759(1); c = 12.0338(1) α = β = γ = 90 | Li: 0, 0, 0.104(2). Sc: 0.5, 0.5, 0.25. B: 0.75, 0.6722(6), 0.6386(3). H1: 0.7939, 0.6688, 0.7251. H2: 0.8960, 0.6926, 0.5891. H3: 0.6394, 0.8072, 0.6234. H4: 0.6705, 0.5201, 0.6166 | Refinement of high-resolution synchrotron powder diffraction and comparison to DFT calculations [42] |
Space group: tetragonal I-4 (82) a = b = 6.479; c = 12.043 α = β = γ = 90 | Li: 0, 0.5, 0.25. Sc: 0, 0, 0.5. B: 0.3534, 0.2469, 0.8889. H1: 0.7621, 0.6206, 0.3339. H2: 0.5416, 0.2551, 0.8711. H3: 0.2852, 0.4221, 0.8705. H4: 0.3325, 0.2111, 0.9890 | Theoretical calculation [44] | |
NaSc(BH4)4 12.67 | Space group: orthorhombic Cmcm (63) a = 8.170(2), b = 11.875(3), c = 9.018(2). α = β = γ = 90 | Na: 0, 0, 0.5. Sc: 0.5, 0.1462(7), 0.75. B1: 0.5, 0.255(1), 0.957(2). H11: 0.5, 0.309(1), 1.060(2). H12: 0.5, 0.163(1), 0.989(2). H13: 0.613(2), 0.274(1), 0.889(2). B2: 0.724(2), 0.036(1), 0.75 H21: 0.837(2), −0.020(1), 0.75. H22: 0.762(2), 0.127(1), 0.75. H23: 0.649(2), 0.017(1), 0.852(2) | Experimental synchrotron powder diffraction [43] |
Space group: orthorhombic C2221 (20) a = 8.318, b = 11.827, c = 9.117 α = β = γ = 90 | Na: 0.07322, 0, 0. Sc: 0, 0.34577, 0.25. B1: −0.49941, 0.26614, −0.4569. B2: 0.27125, 0.04152, −0.25031. H1: −0:49327, 0.32151, 0.43233. H2: 0.39351, 0.29602, −0.37049. H3: 0:12897, 0.23042, 0.38793. H4: −0.35012, 0.48568, −0.25753. H5: 0.24323, 0.14288, −0.27103. H6: 0.3702, 0.01058, −0.34298. H7: 0.16075, 0.46621, 0.3703. H8: 0.47365, 0.16592, −0.4863 | Theoretical calculation [45] | |
KSc(BH4)4 11.24 | Space group: orthorhombic Pnma (62) a = 11.8558(47), b = 7.7998(34); c = 10.1258(63) α = β = γ = 90 | K: 0.1947(16), 0.25, 0.6527(17). Sc: 0.0640(16), 0.25, 0.2152(15). B1: 0.1647(32), 0.25, 0.0150(23). H11: 0.2342(48), 0.25, 0.0939(74). H12: 0.2050(75), 0.25, −0.0881(39). H13: 0.1097(33), 0.37018(21), 0.0271(41). B2: 0.3819(21), 0.25, 0.3840(45). H21: 0.3790(37), 0.25, 0.2706(45). H22: 0.2917(28), 0.25, 0.4251(69). H23: 0.4286(26), 0.37018(21), 0.4201(43). B3: 0.0901(15), 0.0137(21), 0.3431(18). H31: 0.080(13), −0.1071(38), 0.4069(53). H32: 0.058(12), −0.0137(51), 0.2383(28). H33: 0.183(10), 0.052(18), 0.339(10). H34: 0.0386(90), 0.124(22), 0.3886(94) | Experimental data [49] |
RbSc(BH4)4 8.50 | Space group: orthorhombic Pbcm (57) a = 7.6514, b = 11.1821, c = 11.2443 α = β = γ = 90 | B1: 0.23519, 0.02670, −0.58184. H11: 0.36413, 0.04382, −0.64732. H12: 0.27076, −0.02575, −0.49111. H13: 0.17172, 0.12656, −0.55910. H14: 0.12514, −0.02621, −0.64381. H21: 0.94449, 0.21868, −0.83832. H32: 0.22785, 0.29877, −0.66164. Rb1: 0.55522, 0.25, −0.5. Sc1: 0.16021, 0.13182, −0.75. B2: 0.86828, 0.17635, −0.75. H22: 0.71314, 0.19760, −0.75. H23: 0.89853, 0.06708, −0.75. B3: 0.32462, 0.30552, −0.75. H31: 0.41624, 0.21334, −0.75. H33: 0.41306, 0.39492, −0.75 | Computationally optimized [50] |
CsSc(BH4)4 6.80 | Space group: monoclinic P21/c 14 a = 9.5870, b = 10.7270, c = 12.2280 α = 90, β = 126.3510, γ = 90 | Cs22: 0.82694, 0.3427, 0.75062. B1: 0.21177, 0.01695, 0.27563. H2: 0.23203, 0.12082, 0.32887. H3: 0.15239, −0.05817, 0.31159. H4: 0.11686, 0.03374, 0.15052. H5: 0.3566, −0.01335, 0.30707. B6: 0.59468, 0.22457, 0.38529. H7: 0.53578, 0.28562, 0.27965. H8: 0.74057, 0.25675, 0.47509. H9: 0.48976, 0.23768, 0.41267. H10: 0.58853, 0.11248, 0.35595. B11: 0.13689, 0.33158, 0.1196. H12: 0.20824, 0.31906, 0.24318. H13: 0.03689, 0.41819, 0.07083. H14: 0.25418, 0.34173, 0.10504. H15: 0.06144, 0.23137, 0.06534. B16: 0.33930, 0.08443, 0.04155. H17: 0.39476, 0.19319, 0.07405. H18: 0.35291, 0.04517, −0.04403. H19: 0.42198, 0.02115, 0.14752. H20: 0.18734, 0.08764, 0.00469. Sc21: 0.32111, 0.1628, 0.20685 | Computationally optimized [50] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Reference and Comments |
---|---|---|---|
α-Y(BH4)3 9.06 | Space group: cubic Pa-3 (205) a = b = c = 10.894 α = β = γ = 90 | Y: 0.2165, 0.2165, 0.2165. B: 0.1920, 0.2475, 0.9671. H1: 0.2900, 0.2540, 0.0241. H2: 0.1030, 0.2245, 0.0340. H3: 0.1737, 0.3481, 0.9181. H4: 0.2018, 0.1626, 0.8923 | Theoretical calculation (predicted DFT) [53]. Isostructural to Gd(BH4)3 and Dy(BH4)3 |
Space group: cubic Pa-3 (205) a = b = c= 10.8522(7) α = β = γ = 90 | Y: 0.2187(5), 0.2187(5), 0.2187(5). B: 0.1908(5), 0.2455(8), 0.9659(6). D1: 0.2849(6), 0.2525(8), 0.0272(7). D2: 0.1024(7), 0.2215(8), 0.0334(6). D3: 0.1781(7), 0.3450(7), 0.9189(7). D4: 0.1920(7), 0.1626(7), 0.8961(7) | Experimental [58] | |
β-Y(BH4)3 9.06 | Space group: cubic Fm-3c (226) a = b = c = 11.0086(1) α = β = γ = 90 | Y: 0, 0, 0. B: 0, 0, 0.25. D1: 0, 0.4075(1), 0.3104(1) | Experimental, heat treatment in D at 10MPa and 475 K [58] |
LiY(BH4)4 10.39 | Space group: tetragonal P-42c (112) a = b = 6.2360(9); c = 12.491(3) α = β = γ = 90 | B: 0.7453, 0.7453, 0.6535. H1: 0.7642, 0.7596, 0.7527. H2: 0.8643, 0.8647, 0.6063. H3: 0.5562, 0.7854, 0.6331. H4: 0.7818, 0.5566, 0.6307. Li: 0, 0, 0.25. Y: 0.5, 0.5, 0.25. | [62] |
NaY(BH4)4 9.42 | Space group: orthorhombic C2221 (20) a = 8.5263(4), b = 12.1357(5), c = 9.0535(4) α = β = γ = 90_ | B1: 0.4983, 0.2701, −0.0300. B2: 0.7375, 0.0357, 0.7498. H11: 0.5007, 0.3256, 0.0800. H12: 0.4682, 0.1735, 0.0018. H13: 0.6262, 0.2717, −0.0945. H14: 0.6025, 0.3000, 0.6200. H21: 0.3559, 0.4813, 0.7445. H22: 0.7652, 0.1337, 0.7245. H23: 0.6732, 0.0308, 0.8723. H24: 0.6408, 0.0026, 0.6589. Na1: −0.0604, 0, 0. Y1: 0, 0.3478, 0.25. | [62] |
m-KY(BH4)4 8.61 | Space group: monoclinic C2/c (15) a = 14.8947(18), b = 7.8012(10), c = 8.1130(10) α = γ = 90.00, β = 110.167(2) | Y: 0.5, 0.7966(5), 0.25. K: 0.25, 0.25, 0. B1: 0.1338(13), 0.881(2), 0.767(2). H11: 0.078(10), 0.90(5), 0.625(7). H21: 0.104(16), 0.94(4), 0.872(10). H31: 0.21(2), 0.95(7), 0.78(2). H41: 0.15(4), 0.733(13), 0.79(2). B2: 0.0792(11), 0.5812(18), 0.108(3). H12: 0.146(5), 0.58(4), 0.238(9). H22: 0.102(10), 0.62(3), −0.011(10). H32: 0.02(2), 0.68(4), 0.123(18). H42: 0.05(3), 0.44(2), 0.082(15) | 460 K [68] |
o-KY(BH4)4 8.61 | Space group: orthorhombic Cmcm (63) a = 8.59314(10), b = 12.59917(15), c = 9.78460(12) α = β = γ = 90 | K: 0, 0, 0.5. Y: 0.5, 0.13211(7), 0.75. B1: 0.5, 0.2416(4), 0.9513(6). H11: 0.6074(10), 0.2595(4), 0.8887(8). H13: 0.5, 0.2924(6), 1.0464(11). H14: 0.5, 0.1550(9), 0.9813(6). B2: 0.7244(5), 0.0127(4), 0.75. H21: 0.8318(11), −0.0390(6), 0.75. H22: 0.7602(6), 0.0990(9), 0.75. H23: 0 0.6529(9), −0.0045(4), 0.8443(9) | 420 K [68] |
o-RbY(BH4)4 6.90 | Space group: orthorhombic Pnma (62) a = 12.3406(3), b = 8.2482(2), c = 10.5934(3) α = β = γ = 90 | Rb: 0.1816(3), 0.25, 0.6609(5). Y: 0.0415(3), 0.25, 0.1771(6). B1: 0.056(3), 0.027(3), 0.315(3). H11: 0.06(4), −0.084(12), 0.386(10). H12: 0.06(3), −0.022(14), 0.211(7). H13: 0.13(4), 0.11(7), 0.330(14). H14: −0.02(3), 0.10(8), 0.336(13). B2: 0.212(3), 0.25, 0.070(4). H21: 0.214(19), 0.25, 0.181(7). H22: 0.167(7), 0.367(6), 0.033(11). H23: 0.302(9), 0.25, 0.03(2). B3: 0.389(4), 0.25, 0.454(4). H31: 0.364(14), 0.25, 0.346(8). H32: 0.440(5), 0.367(6), 0.476(10). H33: 0.310(10), 0.25, 0.517(15) | 400 K [68] |
c-Rb3Y(BH4)6 5.57 | Space group: cubic Fm-3 (202) a = b = c = 11.5998(3) α = β = γ = 90 | Rb: 0.31, 0.25, 0.25. Y1a (Y): 0.04, 0, 0. Y1b (Rb): 0.04, 0, 0. Y2a (Rb): 0.5, 0.5, 0.5. Y2b (Y): 0.5, 0.5, 0.5. B: 0.5, −4.930381e−032, 0.269(6) H: 0.580(18), 0.00000017(4), 0.325(14)H: 0.5, −0.080(18), 0.212(14) | 490 K, cubic [68] |
Cs3Y(BH4)6 4.19 | Space group: cubic Fm-3 (202) a = b = c = 12.2541(2) α = β = γ = 90 | Cs: 0.31, 0.25, 0.25. Y1a (Y): 0.029(8), 0, 0. Y1b (Cs): 0.029(8), 0, 0. Y2a (Cs): 0.452(3), 0.5, 0.5. Y2b (Y): 0.452(3), 0.5, 0.5. B: 0.5, 0, 0.254(11). H: 0.575(14) 0.00000016(3) 0.308(15). H: 0.5, −0.075(14), 0.201(15) | 553 K [68] |
Rb2LiY(BH4)6 6.80 | Space group: cubic Fm-3 (202) a = b = c = 11.44541(7) α = β = γ = 90 | Rb: 0.25, 0.25, 0.25. Y1a (Y): 0, 0, 0. Y1b (Li): 0, 0, 0. Li2a (Li): 0.5, 0.5, 0.5. Li2b (Y): 0.5, 0.5, 0.5. B: 0.5, 0, 0.2605(7). H: 0.584(3), 0.000000176(7), 0.320(2). H: 0.5, −0.084(3), 0.201(2) | 415 K [68] |
Cs2LiY(BH4)6 5.37 | Space group: cubic Fm-3 (202) a = b = c = 11.25215(19) α = β = γ = 90 | Cs: 0.25, 0.25, 0.25. Y: 0, 0, 0. Li: 0.5, 0.5, 0.5. B:0.5, 0, 0.2508(2). H: 0.5824(5), 0.0000001720(11), 0.3091(4). H: 0.5, −0.0824(5), 0.1925(4), 0.5 | Room temperature [68] |
Material and Hydrogen Content [wt.%] | Symmetry | Atomic Positions [Å] | Comments |
---|---|---|---|
Ti(BH4)3 13.09 | C3h | Ti: 0, 0, 0. B1: 0.14648, 1.91483, −0.00744. B2: −1.61184, −0.84502, 0.00457. B3: 1.53773, −0.97338, 0.00253. H1: −1.10173, 1.64998, −0.00544. H2: 0.67735, 1.51811, 1.08297. H3: 0.67563, 1.50978, −1.09559. H4: −0.78907, −1.82032, 0.00764. H5: −1.61691, −0.23520, 1.12541. H6: −1.61875, −0.24383, −1.12091. H7: 1.97099, 0.22681, −0.00244. H8: 1.01724, −1.27698, 1.1273. H9: 1.01546, −1.28564, −1.11902. H10: 0.22774, 3.07799, −0.01194. H11: −2.65980, −1.35621, 0.00740. H12: 2.50443, −1.62533, 0.00429 | Atomic positions were generated by symmetry arguments from selected bond distances reported in [71] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Reference and Comments |
---|---|---|---|
Zr(BH4)4 10.71 | Space group: cubic P-43m (215)a = b = c = 5.8387(4) α = β = γ = 90 | Zr: 1, 1, 1. B: 0.7714(2), 0.7714(2), 0.7714(2). H1: 0.668(3), 0.668(3), 0.668(3). H2: 0.956(4), 0.748(2), 0.748(2) | At 100 K [83] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Reference and Comments |
---|---|---|---|
Hf(BH4)4 6.78 | Space group: cubic P-43m (215)a = b = c = 5.8387(4) α = β = γ = 90 | Hf: 0, 0, 0. B: 0.226(2), 0.226, 0.226. H1: 0.340(5), 0.340, 0.340. H2: 0.258(2), 0.258, 0.019(2) | At 100 K [93] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | References and Comments |
---|---|---|---|
α-Mn(BH4)2 9.53 | Space group: trigonal P3112 (151) a = 10.4349(1), c = 10.835(2) α = β = 90, γ = 120 | Mn1: 0.23130(50), 0.91807(72), 0.12532(40). Mn2: 0.56272(32), 2x, 0.6666667. B1: 0.0403(34), 0.6990(30), 1.0056(58). H11: −0.0824(33), 0.6582(70), 1.0014(67). H12: 0.0712(79), 0.6455(79), 0.9292(92). H13: 0.0685(66), 0.6689(49), 1.0980(89) H14: 0.1041(50), 0.8233(31), 0.9937(44). B2: 0.4708(31), 2x, 0.1666667. H21: 0.4285(44), 1.0140(63), 0.206(41). H22: 0.393(40), 0.8688(61), 0.0914(60). B3: 2y, 0.10206, 0. H31: 0.1323(30), 0.1145(36), −0.0717(24). H32: 0.2766(30), 0.0642(23), −0.0463(37). B4: 0.1329(17), 1-x, 0.3333333. H41: 0.0199(28), 0.8265(39), 0.3754(44). H42: 0.1250(54), 0.7875(42), 0.2588(29). B5: 0.7056(23), 1-x, 0.8333333. H51: 0.7531(36), 0.4149(28), 0.8590(98). H52: 0.716(11), 0.232(10), 0.9146(22) | [115] |
δ-Mn(BH4)2 9.53 | Space group: tetragonal I41/acd (142) a = 7.85254(6), b = 7.85254(6),c = 12.14548(17) α = β = γ = 90 | Mn: 0, 0.25, 0.125. B: 0.0197(17), 0, 0.25, H1: −0.0833(17), −0.01726, 0.17047. H2: 0.1247(17), 0.86217, 0.24890 | [111] |
δ’-Mn(BH4)2 9.53 | Space group: orthorhombic Fddd (70) a = 12.638(15), b = 9.321(10), c = 9.205(17) α = β = γ = 90 | Mn: −0.08981, 0.125, 0.125, B1: 0.52633, 0.44943, 0.21955. H11: 0.55862, 0.32065, 0.21651. H12: 0.31244, 0.30784, 0.26337. H13: 0.17630, 0.20909, 0.29581. H14: 0.53619, 0.49567, 0.09304 | [111] |
γ-Mn(BH4)2 9.53 | Space group: cubic Ia-3d (230) a = b = c= 16.2094(13) α = β = γ = 90 | Mn: ¼, 1/8, ½. B1: 0.3090(11), 0.0590(11), 3/8. H1: 0.2849(11), 0.0199(11), 0.43730. H2: 0.2966(11), 0.1347(11), 0.38560 | [109] |
K2Mn(BH4)4 8.38 | Space group: monoclinic P21/c (14) a = 8.1375(7), b = 9.8456(7), c = 12.7420(12) α = 90, β = 100.552(6), γ = 90 | K1: 0.2813(8), 0.3548(5), 0.5547(6). K2: 0.1974(11), 0.5047(7), 0.1980(5). Mn1: 0.7793(6), 0.2180(3), 0.4143(5). B1: 0.495(3), 0.676(3), 0.638(2). H11: 0.454(6), 0.74(2), 0.56(1). H12: 0.458(9), 0.73(2), 0.71(1). H13: 0.64(1), 0.66(1), 0.653(4). H14: 0.43(2), 0.57(2), 0.63(1). B2: 0.503(3), 0.270(2), 0.811(2). H21: 0.558(6), 0.241(5), 0.735(3). H22: 0.578(5), 0.213(6), 0.886(3). H23: 0.361(6), 0.239(7), 0.799(3). H24: 0.516(9), 0.389(2), 0.826(4). B3: 0.866(3), 0.357(3), 0.578(2). H31: 0.948(8), 0.354(7), 0.51(1). H32: 0.76(1), 0.436(8), 0.556(6). H33: 0.95(1), 0.388(8), 0.660(6). H34: 0.808(9), 0.248(5), 0.587(5). B4: 0.210(3), 0.524(2), 0.918(2). H41: 0.195(7), 0.449(3), 0.844(4). H42: 0.345(6), 0.513(8), 0.97(1). H43: 0.11(2), 0.498(9), 0.971(6). H44: 0.19(1), 0.637(7), 0.886(6) | [108] |
Li3MnZn5(BH4)15 9.67 | Space group: hexagonal P63/mcm (193) a = 15.391(3), c = 8.590(2) α = β = 90, γ = 120 | Zn1: 1/3, 2/3, ¼. Zn2: 0.2861(4), 0, ¼. Li/Mn: 0.6089(7), 0, ¼. Li: 0, 0, 0. B1: 0.131(1), 0, ¼. H11: 0.089(2), 0, 0.358(2). H12: 0.139(2), −0.069(2), ¼. B2: 0.332(2), 0, 0.002(2). H21: 0.296(2), 0, −0.113(2). H22: 0.405(2), 0, −0.021(2). H23: 0.279(2), −0.069(2), 0.071(2). B3: 0.525(1), 0.344(2), ¼. H31: 0.443(2), 0.284(2), ¼. H32: 0.532(2), 0.420(2), 1/4. H33: 0.563(2), 0.336(2), 0.142(2) | Refined from synchrotron radiation powder diffraction data at room temperature [129] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | References and Comments |
---|---|---|---|
Zn(BH4)2 8.48 | Space group: triclinic P-1 (2) a = 6.877, b = 5.440, c =7.842 α = 89.5, β = 76.15, γ = 89.98 | Zn: 0.2498, 0.0001, 0.9998. B1: 0.0567, 0.8903, 0.7939. B2: 0.5497, 0.1754, 0.8166. H1: 0.0997, 0.8534, 0.6382. H2: 0.5892, 0.2640, 0.6710. H3: 0.1789, 0.7718, 0.8612. H4: 0.3316, 0.7331, 0.0999. H5: 0.1031, 0.2267, 0.1397. H6: 0.3863, 0.2679, 0.9011. H7: 0.0498, 0.1135, 0.8210. H8: 0.4481, 0.0506, 0.1928 | Theoretical [30] |
Space group: orthorhombic Pmc21 (26) a = 4.118, b = 4.864, c = 7.916 α = β = γ = 90 | Zn: 0, 0.28459, 0.0089. B1: 0.5, −0.06481, 0.4706. B2: 0, −0.46194, 0.24842. H1: 0.5, −0.30735, 0.42745. H2: 0.27449, −0.0050, −0.42983. H3: 0, 0.39706, 0.37973. H4: 0, 0.21066, −0.24017. H5: 0.25820, −0.48360, −0.32151. H6: 0.5, 0.08396, 0.3488 | Optimized structure [144] | |
LiZn(BH4)3 10.35 | Space group: monoclinic P21/c (14) a = 10.59, b = 14.74, c = 8.66 α = γ = 90, β = 111.056 | Zn1: 0.76982, 0.11283, 0.7512. Zn2: 0.40867, 0.26754, 0.60812. Li1: 0.08413, 0.12904, 0.25099. Li2: 0.77464, 0.09463, 0.25701. B1: 0.51747, 0.39654, 0.64566. B2: 0.24290, 0.26206, 0.72420. B3: 0.84715, 0.05769, 1.01282. B4: 0.84433, −0.00056, 0.57012. B5: 0.53022, 0.13104, 0.62602. B6: 0.87262, 0.25874, 0.80977. H11: 0.48781, 0.46308, 0.70437. H12: 0.60520, 0.40322, 0.58737. H13: 0.41470, 0.3777, 0.52066. H14: 0.5496, 0.33635, 0.75538. H21: 0.12228, 0.25280, 0.65129. H22: 0.27910, 0.33967, 0.71248. H23: 0.29189, 0.19988, 0.6632. H24: 0.27506, 0.25791, 0.37092. H31: 0.81526, 0.01114, 0.88397. H32: 0.78587, 0.12997, 0.9924. H33: 0.96820, 0.07003, 1.05745. H34: 0.81149, 0.00813, 1.10142. H41: 0.76794, −0.04277, 0.62085. H42: 0.79042, 0.00405, 0.4204. H43: 0.95622, −0.03529, 0.61027. H44: 0.87034, 0.07826, 0.62903. H51: 0.43883, 0.07855, 0.59858. H52: 0.50460, 0.19684, 0.52625. H53: 0.61326, 0.09429, 0.5739. H54: 0.57432, 0.15595, 0.77025. H61: 0.95757, 0.20272, 0.87941. H62: 0.77207, 0.22980, 0.69158. H63: 0.91771, 0.31006, 0.73238. H64: 0.83042, 0.29690, 0.90608 | DFT optimization [155] |
LiZn2(BD4)5 9.51 (calculated as H) | Space group: orthorhombic Cmca (64) a = 8.6031(13), b = 17.8876(4), c = 15.3598(3) α = β = γ = 90 | Zn1: 0, 0.6440(10), 0.7665(11). Zn2: 0, 0.4252(12), 0.6300(16). Li1: 0, 0.138(6), 0.434(6). B1: 0, 0.2580(4), 0.3166(5). D11: 0, 0.1912(4), 0.3101(17). D12: 0, 0.2807(10), 0.3903(5). D13: 0.1153(7), 0.2798(7), 0. 2804(7). B2: 0, 0.3513(4), 0.0903(5). D21: 0, 0.2971(5), 0.0442(8). D22: 0, 0.4090(5), 0.0505(9). D23: 0.1136(7), 0.3488(10), 0.1355(5). B3: 0, 0.5320(4), 0.7016(4). D31: 0, 0.4746(5), 0.7421(9). D32: 0, 0.5264(14), 0.6238(5). D33: 0.1145(7), 0.5662(5), 0.7223(9). B4: 0.2284(8), 0.3825(4), 0.5882(4). D41: 0.1551(14), 0.4234(6), 0.5415(7). D42: 0.3368(10), 0.4186(7), 0.6142(11). D43: 0.1591(14), 0.3629(10), 0.6520(6). D44: 0.2550(19), 0.3297(5), 0.5424(8) | 295 K, 11B [156] |
NaZn(BH4)3 9.10 | Space group: triclinic P1 (1) a = 7.125, b = 7.246, c = 4.688 α = 99.254 β = 91.097 γ = 71.422 | Li: −0.353, 0.225, −0.465. Zn: −0.022, −0.471, 0.277. B: −0.139, −0.150, 0.339. B: 0.257, 0.353, 0.442. B: −0.241, 0.396, 0.047. H: −0.052, −0.034, 0.428. H: −0.045, −0.248, 0.112. H: −0.134, −0.247, −0.46. H: −0.31, −0.086, 0.276. H: 0.343, 0.18, 0.356. H: 0.251, 0.439, 0.229. H: 0.092, 0.359 −0.465. H: 0.328, 0.438, −0.363. H: −0.282, 0.485, 0.298. H: −0.069, 0.374, −0.041. H: −0.242, 0.227, 0.036. H: −0.355, 0.495, −0.107 | PEGS + DFT calculations [146] |
NaZn2(BH4)5 8.84 | Space group: monoclinic P21/c (14) a = 9.397(2), b = 16.635(3), c = 9.1359(16) α = γ = 90, β = 112.658(19). | Na1: 0.245(6), 0.436(3), 0.117(8). Zn1: 0.2873(16), 0.7660(11), 0.643(3). Zn2: 0.8412(17), 0.6268(8), 0.395(2). B1: 0.5212, 0.3234, 0.2606. B2: 0.7102, 0.0954, 0.3551. B3: 0.0844, 0.6934, 0.5422. B4: 0.7766, 0.5874, 0.6112. B5: 0.7766, 0.9126, 0.6654. H11: 0.3982, 0.3357, 0.1991. H12: 0.5824, 0.3869, 0.2912. H13: 0.5530, 0.2145, 0.6707. H13: 0.5530, 0.2855, 0.3823. H21: 0.6098, 0.1394, 0.3049. H22: 0.8140, 0.1363, 0.4070. H23: 0.7076, 0.4452, 0.7476. H23: 0.7076, 0.0548, 0.4600. H31: 0.9880, 0.7394, 0.4940. H32: 0.0428, 0.6250, 0.5214. H33: 0.1548, 0.7038, 0.6833. H33: 0.1548, 0.7962, 0.9715. H41: 0.8304, 0.5354, 0.5677. H42: 0.8574, 0.6148, 0.7372. H43: 0.7370, 0.6415, 0.5129. H44: 0.6750, 0.5617, 0.6206. H51: 0.8304, 0.9646, 0.7627. H52: 0.8574, 0.8852, 0.6202. H53: 0.7370, 0.8585, 0.7241. H54: 0.6750, 0.9383, 0.5544 | [147] |
KZn(BH4)3 8.12 | Space group: trigonal R3 (146) a = b = 7.6291(8), c = 10.977(2)α = γ = 90, β = 120 | K: 0, 0, 0.49936. Zn: 0, 0, 0.00309. B: 0.31006, 0.05088, 0.01153. H1: 0.19196, 0.98384, 0.10009. H2: 0.44232, 0.21786, 0.03989. H3: 0.36275, 0.92929, 0.98755. H4: 0.22942, 0.06605, 0.91529 | Atomic parameters at T = 100 K [160] |
Li3MgZn5(BH4)15 10.17 | Space group: hexagonal P63/mcm (193) a = b = 15.371(3), c = 8.586(2) α = γ = 90, β = 120 | Zn1: 1/3, 2/3, ¼. Zn2: 0.2832(5), 0, ¼. Li/Mg: 0.598(1), 0, ¼. Li: 0, 0, 0. B1: 0.131(1), 0, ¼. H11: 0.089(2), 0, 0.358(2). H12: 0.139(2), −0.069(2), ¼. B2: 0.338(1), 0, 0.004(2). H21: 0.302(2), 0, −0.111(2). H22: 0.410(2), 0, −0.019(2). H23: 0.285(2), −0.069(2), 0.073(2). B3: 0.5286(6), 0.346(2), ¼. H31: 0.447(2), 0.286(2), ¼. H32: 0.535(2), 0.423(2), ¼. H33: 0.566(2), 0.338(2), 0.143(2) | At RT. Occupation of the Li/Mg site Li: occ = 0.66(2), Mg: (1 − occ) = 0.34(2) Occupation of the Li site Li: 3*occ − 1 = 1 [129] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | References and Comments |
---|---|---|---|
α-Al(BH4)3 16.91 | Space group: monoclinic C2/c (15) a = 21.917(4), b = 5.9860(12), c = 21.787(4) α = 90, β = 111.90(3), γ = 90 | Al: 0.3795(2), 0.5901(7), 0.8361(2). B1: 0.3206(8), 0.3030(32), 0.8238(9). H1A: 0.3757(22), 0.2993(63), 0.8366(46). H1B: 0.3013(20), 0.4814(73), 0.8173(47). H1C: 0.3027(47), 0.2727(183), 0.8584(38). H1D: 0.3046(48), 0.2249(160), 0.7796(31). B2: 0.3866(8), 0.7476(31), 0.7508(8). H2A: 0.4169(33), 0.5987(109), 0.7778(30). H2B: 0.3557(34), 0.8117(91), 0.7806(28). H2C: 0.3642(41), 0.7334(182), 0.7017(23). H2D: 0.4205(40), 0.8679(136), 0.7655(48). B3: 0.4304(8), 0.7262(30), 0.9308(8). H3A: 0.3763(23), 0.7595(127), 0.9008(25). H3B: 0.4537(21), 0.6121(126), 0.9038(25). H3C: 0.4382(48), 0.6799(171), 0.9768(28). H3D: 0.4517(46), 0.8796(97), 0.9376(49) | [176] CCDC (Cambridge Crystallographic Data Centre) identification number 230830 |
β-Al(BH4)3 16.91 | Space group: orthorhombic Pna2 (33) a = 18.021(3), b = 6.138(2), c = 6.1987(14) α = β = γ = 90 | Al: 0.86775(6), 0.1592(2), 0.20350(9). B1: 0.7780(5), 0.0040(15), 0.0503(15). H1: 0.8398(18), −0.0226(76), 0.0215(80). H1B: 0.7744(19), 0.1321(67), 0.1790(80). H1C: 0.7576(29), −0.1277(74), 0.1214(93). H1D: 0.7568(32), 0.0678(98), −0.0833(79). B2: 0.9113(5), 0.0203(17), 0.4915(15). H2: 0.9320(23), −0.0107(69), 0.3238(56). H2B: 0.8667(21), 0.1458(67), 0.4853(78). H2C: 0.9534(26), 0.0912(84), 0.5627(93). H2D: 0.8887(32), −0.1166(69), 0.5420(101). B3: 0.9122(5), 0.4460(15), 0.0629(21). H3A: 0.8716(23), 0.4427(57), 0.1979(76). H3B: 0.9300(25), 0.2732(53), 0.0287(83). H3C: 0.9542(26), 0.5038(87), 0.1428(94). H3D: 0.8912(33), 0.4975(103), −0.0728(77) | [176] CCDC (Cambridge Crystallographic Data Centre) identification number 230829 |
Li4Al3(BH4)13 17.37 | Space group: cubic P-43n (218) a = b = c = 11.3640(3) Å α = β = γ = 90 | Li: 0.1315(11), 0.1315(11), 0.1315(11). B1: 0, 0, 0. H11: 0.9424(5), 0.9424(5), 0.9424(5). Al: ¼, ½, 0. B2: 0.1731(5), 0.6680(5), 0.4547(4). H21: 0.1892(15), 0.6358(15), 0.3636(8). H22: 0.1595(15), 0.7671(6), 0.4548(15). H23: 0.0876(10), 0.6266(14), 0.4893(15). H24: 0.2463(11), 0.6455(15), 0.5176(12) | At 100 K Rietveld refinement [186] |
KAl(BH4)4 12.85 | Space group: orthorhombic Fddd (70) a = 9.7405(3), b = 12.4500(4), c = 14.6975(4) α = β = γ = 90 | K: 0.125, 0.125, 0.125. Al: 0.375, 0.375, 0.375. B: 0.7760(4), 0.6939(3), 0.7263(3). H1: 0.6927(10), 0.7372(10), 0.6864(8). H2: 0.7559(12), 0.7164(11), 0.7984(5). H3: 0.7654(12), 0.6077(5), 0.7198(8). H4: 0.8767(8), 0.7204(8), 0.7007(8) | [185] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Comments |
---|---|---|---|
NaLa(BH4)4 7.29 | Space group: orthorhombic Pbcn (60) a = 6.79865, b = 17.31073,c = 7.26547 α = β = γ = 90.00 | Na: 0.50044, 0.07200, 0.75028. La: 0.00006, 0.17197, 0.24971. B: 0.26676, 0.43014, 0.88057. H1: 0.34758, 0.36477, 0.88347. H2. 0.24611, 0.45458, 1.03337. H3: 0.10366, 0.42625, 0.80070. H4: 0.37496, 0.47548, 0.79356. B: 0.75157, 0.19400, 0.51886. H1: 0.63613, 0.20423, 0.38704. H2: 0.70323, 0.13930, 0.60198. H3: 0.74575, 0.25066, 0.62265. H4: 0.92434, 0.18235, 0.45697 | [202]. NaLa(BH4)4 is isostructural to NaCe(BH4)4 and NaPr(BH4)4 [204] |
K3La(BH4)6 7.01 | Space group: monoclinic P21/n (14) a = 7.93840, b = 8.35246, c = 11.57068 α = γ = 90, β = 90.18977 | K1: 0.5, 0.5, 0.5. K2: 0.47777, 0.05175, 0.25048. La: 0, 0, 0.5. B1: 0.34697, 0.83332, 0.0777. H1: 0.40173, 0.79562, 0.16487. H2: 0.28607, 0.95646, 0.08622. H3: 0.45213, 0.83873, 0.01072. H4: 0.24803, 0.74232, 0.04903. B2: 0.16081, 0.32239, 0.07051. H1: 0.09016, 0.29934, 0.15464. H2: 0.23328, 0.43994, 0.07762. H3: 0.25285, 0.21998, 0.05400. H4: 0.06681, 0.33015, −0.00418. B3: 0.63098, 0.43325, 0.22717. H1: 0.72435, 0.37192, 0.28787. H2: 0.55241, 0.52310, 0.27813. H3: 0.70283, 0.49845, 0.15596. H4: 0.54446, 0.33942, 0.18673 | [202] |
Li3K3La2(BH4)12 8.14 | Space group: cubic Ia-3d (230) a = 17.60563, b = 17.60563, c = 17.60563 α = β = γ = 90 | K: 0.25, 0.8750, 0.5. Li: 0.3750, 0, 0.25. La: 0.5, 0, 0. B: 0.4, 0.7, 0.28. H1: 0.36161, 0.75067, 0.28790. H2: 0.45847, 0.71997, 0.26308. H3: 0.40365, 0.66722, 0.33496. H4: 0.37619, 0.66215, 0.23408 | [202] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Comments |
---|---|---|---|
r-Ce(BH4)3 6.55 | Space group: trigonal R-3c (167) a = b = 7.3745(1), c = 20.1567(2) α = β = 90, γ = 120 | Ce: 0, 0, 0. B: 0.632(2), 0, ¼. H1: 0.461(2), −0.094(5), 0.261(2). H2: 0.759(2), 0.026(5), 0.288(2) | [200]. Isostructural to r-La(BH4)3 |
c-Ce(BH4)3 6.55 | Space group: cubic Fm-3c (226) a = b = c = 11.7106(6) α = β = γ =90 | Ce: 0, 0, 0. B: 0, 0, ¼. H: 0, 0.4075(1), 0.3104(1) | [200]. Isostructural to c-La(BH4)3 |
NaCe(BH4)4 7.25 | Space group: orthorhombic Pbcn (60) a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) α = β = γ =90 | Na1: 0.50044, 0.0720, 0.75028. Ce2: 0.00006, 0.17197, 0.24971. B3: 0.26676, 0.43014, 0.88057. H14: 0.34758, 0.36477, 0.88347. H15: 0.24611, 0.45458, 0.03337. H16: 0.10366, 0.42625, 0.80070. H17: 0.37496, 0.47548, 0.79356. B8: 0.75157, 0.1940, 0.51886. H19: 0.63613, 0.20423, 0.38704. H110: 0.70323, 0.13930, 0.60198. H111: 0.74575, 0.25066, 0.62265. H112: 0.92434, 0.18235, 0.45697 | [204] |
Li3K3Ce2(BH4)12 8.11 | Space group: cubic Ia-3d (230) a = 17.60756(4), b = 17.60756(4), c = 17.60756(4) α = β = γ = 90 | Ce: 0.5, 0, 0. K: 0.25, 0.8750, 0.5. B: 0.39971, 0.70333, 0.28374. H13: 0.3513, 0.68574, 0.32305. H14: 0.40777, 0.76754, 0.28684. H15: 0.45434, 0.67373, 0.30222. H16: 0.38538, 0.68622, 0.22287. Li: 0.3750, 0, 0.25 | [203] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | References and Comments |
---|---|---|---|
α-Pr(BH4)3 6.52 | Space group: cubic Pa-3 (205) a = b = c = 11.2941(5) α = β = γ = 90 | Pr: 0.2179, 0.2179, 0.2179. B: 0.1930, 0.2473, 0.9682. H13: 0.2909, 0.2534, 0.0243. H14: 0.1043, 0.2257, 0.0351. H15: 0.1752, 0.3475, 0.9192. H16: 0.2014, 0.1623, 0.8942 | [31] |
β-Pr(BH4)3 β´-Pr(BH4)3 β´´-Pr(BH4)3 6.52 | Space group: cubic Fm-3c (226) a = b = c = 11.458(2) a = b = c = 11.3283(6) a = b = c = 11.1438(2) α = β = γ = 90 | Pr: 0, 0, 0. B: 0, 0, 0.25. H13: 0, 0.4069, 0.3116 | [31] |
r -Pr(BH4)3 6.52 | Space group: trigonal R-3c (167) a = b = 7.373(6), c = 19.89(2) α = β = 90, γ = 120 | Pr: 0, 0, 0. B: 0.6202(2), 0, 0.25. D13: 0.4835(4), −0.1056(10), 0.2881(1). D14: 0.7699(3), 0.1072(8), 0.2834(1) | [31] |
NaPr(BH4)4 7.22 | Space group: orthorhombic Pbcn (60) a = 6.7617(2), b = 17.4679(7), c = 7.2523(3) α = β = γ = 90.00 | Na: 0.50044, 0.0720, 0.75028. Pr: 0.00006, 0.17197, 0.24971. B: 0.26676, 0.43014, 0.88057. H14: 0.34758, 0.36477, 0.88347. H15: 0.24611, 0.45458, 0.03337. H16: 0.10366, 0.42625, 0.8007. H17: 0.37496, 0.47548, 0.79356. B8: 0.75157, 0.1940, 0.51886. H19: 0.63613, 0.20423, 0.38704. H110: 0.70323, 0.13930, 0.60198. H111: 0.74575, 0.25066, 0.62265. H112: 0.92434, 0.18235, 0.45697 | [204] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Comments |
---|---|---|---|
Sm(BH4)2 4.48 | Space group: orthorhombic Pbcn (60) a = 6.97129(14), b = 8.43870(17), c = 7.56841(14) α = β = γ = 90 | Sm: 0, 0.15216(14), 0.25. B: 0.2544(14), 0.3710(18), 0.4218(14). H1: 0.384(4), 0.292(4), 0.369(6). H2: 0.153(6), 0.292(5), 0.514(7). H3: 0.164(7), 0.421(6), 0.300(4). H4: 0.316(6) 0.479(5) 0.506(7) | [212] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | References and Comments |
---|---|---|---|
o-Eu(BH4)2 4.44 | Space group: orthorhombic Pbcn (60) a = 6.90343(16), b = 8.37272(18), c = 7.48321(16) α = β = γ = 90 | Eu: 0, 0.15042(20), 0.25. B: 0.2459(21), 0.3837(31),0.4335(21). H1: 0.327(11), 0.280(8), 0.352(11). H2: 0.138(11), 0.325(10), 0.540(10). H3: 0.155(12), 0.465(9), 0.332(11). H4: 0.363(10), 0.464(9), 0.509(13) | [212] |
t-Eu(BH4)2 4.44 | Space group: tetragonal P41212 (92) a = 5.4091(6), b = 5.4091(6), c = 11.6201(17) α = β = γ = 90 | Eu1: 0.0627(16), 0.0624(16), 0. B2: 0.9401, 0.4249, 0.3648. H3: 0.0998, 0.4164, 0.4199. H4: 0.9590, 0.58450, 0.3101. H5: 0.9311, 0.2550, 0.3159. H6: 0.7705, 0.4436, 0.41330 | [215] |
c-Eu(BH4)2 4.44 | Space group: cubic Fm-3m (225) a = b = c = 7.0602(17) α = β = γ = 90 | Eu1: 0, 0, 0. B2: 0.25, 0.25, 0.25. H3: 0.15789, 0.15716, 0.34228 | [215] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Reference and Comments |
---|---|---|---|
α-Gd(BH4)3 5.99 | Space group: cubic Pa-3 (205) a = b = c = 11.008 α = β = γ = 90 | Gd: 0.2169, 0.2169, 0.2169. B: 0.1919, 0.2475, 0.9670. H1: 0.2892, 0.2539, 0.0231. H2: 0.1039, 0.2248, 0.0335. H3: 0.1736, 0.3472, 0.9186. H4: 0.2012, 0.1633, 0.8931 | Theoretical calculation (predicted DFT). [53] |
K2Gd(BH4)5 6.51 | Space group: monoclinic P21/m (11) a = 8.7001(3), b = 12.1241(5), c = 11.9893(5) α = 90, β = 105.009(1), γ = 90 | K1: 0.5957(9), 0.5399(6), 0.3382(7). K2: 0.8353(14), 0.7500, 0.6833(11). K3: 0, 0.5, 0. Gd1: −0.1357(3), 0.25, 0.6319(3). Gd2: −0.4610(3), 0.25, 0.0824(3). B1: −0.433(5), 0.25, 0.474(4). H11: −0.37(2), 0.25, 0.402(14). H12: −0.34(2), 0.25, 0.563(11). H13: −0.512(6), 0.172(3), 0.466(12). B2: 0.155(6), 0.25, 0.540(4). H21: 0.293(8), 0.25, 0.573(16). H22: 0.10(2), 0.25, 0.618(11). H23: 0.114(13), 0.172(3), 0.485(5). B3: −0.050(6), 0.25, 0.850(4). H31: 0.064(16), 0.25, 0.926(14). H32: −0.161(17), 0.25, 0.887(18). H33: −0.052(16), 0.172(3), 0.794(5). B4: 0.493(6), 0.25, 0.862(5). H41: 0.356(8), 0.25, 0.827(17). H42: 0.55(2), 0.25, 0.785(12). H43: 0.533(13), 0.172(3), 0.917(6). B5: −0.206(4), −0.515(2), 0.592(3). H51: −0.20(3), −0.477(12), 0.505(7). H52: −0.11(3), −0.48(2), 0.667(8). H53: −0.19(6), −0.609(7), 0.591(9). H54: −0.331(13), −0.50(4), 0.605(13). B6: −0.653(4), 0.100(2), 0.130(3). H61: −0.788(8), 0.116(16), 0.119(14). H62: −0.621(19), 0.119(9), 0.044(8). H63: −0.62(2), 0.009(7), 0.157(14). H64: −0.580(19), 0.158(14), 0.202(11). B7: −0.212(4), 0.108(2), 0.179(3). H71:−0.17(2), 0.017(6), 0.185(13). H72: −0.204(13), 0.145(11), 0.092(7). H73: −0.132(19), 0.158(11), 0.254(8). H74: −0.343(8), 0.111(15), 0.186(12) | [20] experimental 298 K |
KGd(BH4)4 6.31 | Space group: monoclinic P21/c (14) a = 7.1051(6), b = 7.7365(6), c = 8.1049(6), α = γ = 90, β = 102.192(4) | K1: 0.5, 0, 0.5. Gd1: 0, 0.5, 0.5. B1: −0.107(8), 0.771(7), 0.328(7). H11: −0.10(6), 0.71(3), 0.46(2). H12: 0.01(6), 0.70(6), 0.27(4). H13: −0.07(11), 0.92(2), 0.34(5). H14: −0.26(3), 0.75(10), 0.24(4). B2: 0.653(8), 0.146(5), 0.900(7). H21: 0.56(3), 0.27(2), 0.92(3). H22: 0.55(3), 0.03(2), 0.86(3). H23: 0.76(3), 0.12(3), 1.027(18). H24: 0.74(3), 0.17(3), 0.80(2) | [20] experimental 450 K |
Cs3Gd(BH4)6 3.75 | Space group: cubic F23 (196) a = b = c = 11.3000(1),α = β = γ = 90 | Cs1: 0, 0, 0. Cs2: 0, 0.5, 0. Cs3: 0.75, 0.75, 0.75. Gd: 0.2503, 0.7495, 0.7483. B: 0.7498, 0.7499, 0.4965. H1: 0.8059, 0.8100, 0.5550. H2: 0.6900, 0.8062, 0.4380 | [20] experimental 298 K |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Comments |
---|---|---|---|
NaEr(BH4)4 6.46 | Space group: orthorhombic Cmcm (63) a = 8.5379(2), b = 12.1570(4), c = 9.1652(3) α= β= γ = 90 | Na11: 0, 0, 0.5. Er12: 0.5, 0.1430, 0.75. B13: 0.5, 0.2630, 0.9630. H14: 0.5, 0.3200, 0.0640. H15: 0.5, 0.1720, 1.0020. H16: 0.6113, 0.2800, 0.8930. B17: 0.7390, 0.0410, 0.75. H18: 0.8660, 0.0060, 0.75. H19: 0.7440, 0.1360, 0.75. H110: 0.6730, 0.0110, 0.85368 | [204] |
Material and Hydrogen Content [wt.%] | Structural Parameters [Å, °] | Atomic Positions | Comments |
---|---|---|---|
α- Yb(BH4)2 5.56 | Space group: cubic Pa-3 (205) a = b= c = 10.70715(15) α= β= γ = 90 | Yb: 0.71615(5), 0. 71615(5), 0. 71615(5). B: −0.0391(12), 0.6968(11), 0.7536(18). H1: −0.104(6), 0.640(6), 0.684(6). H2: 0.064(3), 0.652(5), 0.753(8). H3: −0.079(7), 0.693(7), 0.857(3). H4: −0.031(6), 0.803(2), 0.720(7) | [198] |
β-Yb(BH4)2 5.56 | Space group: cubic Pm-3m (221) a = b = c = 5.44223(3) α = β = γ = 90 | Yb: 0, 0, 0. B: ½, 0, 0. H: 0.3745(4), 0, 0.1826(3) | [198] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Alcántara, K.; Tena García, J.R. Metal Borohydrides beyond Groups I and II: A Review. Materials 2021, 14, 2561. https://doi.org/10.3390/ma14102561
Suárez-Alcántara K, Tena García JR. Metal Borohydrides beyond Groups I and II: A Review. Materials. 2021; 14(10):2561. https://doi.org/10.3390/ma14102561
Chicago/Turabian StyleSuárez-Alcántara, Karina, and Juan Rogelio Tena García. 2021. "Metal Borohydrides beyond Groups I and II: A Review" Materials 14, no. 10: 2561. https://doi.org/10.3390/ma14102561