Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene—A Review
Abstract
:1. Introduction
2. Hydrogen Storage—Challenges, Methods, Applications
- Chemically, with the help of different liquid or solid chemical compound;
- Physically (due to the changes of its physical state conditions like pressure, temperature, or phase;
- Or physico-chemically, combining the previous methods.
Industrial Applications for Hydrogen Storage
3. General Characteristic of Carbon-Based Materials Concerning Hydrogen Storage
4. Hydrogen Storage in Carbon Materials Not Based on Graphene Structures
5. Graphene-Assisted Hydrogen Storage
- Basic material that takes part in sorption and desorption processes;
- Scaffolding for metal catalysts allowing the spill-over processes to take place (sorption/desorption of graphene itself assisted by additional catalyst);
- Material used to modify the existing solutions, e.g., composites based on graphene and metal hydrides.
5.1. Plane Graphene and its Decorated Derivatives
5.2. Composites Containing Graphene
5.3. Spatial Graphene for Hydrogen Storage
6. Future Perspectives
- Working of the technology of mass production of the substrates—GO and/or rGO with a high degree of exfoliation and purity at the level of at least 99.99% C;
- Development of chemically durable and mechanically resistant, spatially pillared, nanoporous 3D graphene structures with an active surface of at least 1000 m2/g;
- Selection of effective “spill-over” catalysts with a range of reversible reactions with hydrogen identical to the reversible reaction of graphene–graphene;
- Development of a technology of spatial decoration of nanoporous 3D graphene structures with nanoparticles of optimal “spill-over” catalysts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muradov, N.Z.; Veziroglu, T.N. Green path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int. J. Hydrogen Energy 2008, 33, 6804–6839. [Google Scholar] [CrossRef]
- Dincer, I. Environmental and sustainability aspects of hydrogen and fuel cell systems. Int. J. Energy Res. 2007, 31, 29–55. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Ball, M.; Wietschel, M. The future of hydrogen—Opportunities and challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, A.; Ichikawa, T.; Kojima, Y.; Dey, G.K. Development of vanadium based hydrogen storage material: A review. Renew. Sustain. Energy Rev. 2017, 72, 791–800. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.; Gong, L.; Zhou, Y.; Song, X.; Zhu, W.; Zhang, M.; Zhang, Z. Bibliometrical analysis of hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 28206–28226. [Google Scholar] [CrossRef]
- Bathelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 2007, 120, 246–256. [Google Scholar]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356–4362. [Google Scholar] [CrossRef]
- Zuttel, A. Hydrogen storage methods. Naturwissenschaften 2004, 91, 157–172. [Google Scholar] [CrossRef]
- Midilli, A.; Aya, M.; Dincer, I.; Rosen, M.A. On hydrogen and hydrogen energy strategies I: Current status and needs. Renew. Sustain. Energy Rev. 2005, 9, 255–271. [Google Scholar] [CrossRef]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Barreto, L.; Makihira, A.; Riahi, K. The hydrogen economy in the 21st century: A sustainable development scenario. Int. J. Hydrogen Energy 2003, 28, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Veziroglu, N.T.; Sahın, S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Crabtree, G.W.; Dresselhaus, M.S. The hydrogen fuel alternative. MRS Bull. 2008, 33, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Energy Gov. Available online: https://www.energy.gov/ (accessed on 12 December 2020).
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.D.L. Review Graphite. J. Mater. Sci. 2002, 37, 1475–1489. [Google Scholar] [CrossRef]
- Jaina, N.; Kanu, N.J. The potential application of carbon nanotubes in water Treatment: A state-of-the-art-review. Mater. Today Proc. 2021, 43, 2998–3005. [Google Scholar]
- McCarty, K.F.; Feibelman, P.J.; Loginova, E.; Bartelt, N.C. Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0 0 0 1). Carbon 2009, 47, 1806–1813. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Kumamoto, A.; Kim, S.; Chen, X.; Hou, B.; Chiashi, S.; Einarsson, E.; Ikuhara, Y.; Maruyama, S. Self-Limiting Chemical Vapor Deposition Growth of Monolayer Graphene from Ethanol. J. Phys. Chem. C 2013, 117, 10755–10763. [Google Scholar] [CrossRef]
- Hang, J.; Kim, M.; Shields, V.B.; Spencer, M.G. CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC. J. Cryst. Growth 2013, 366, 26–30. [Google Scholar]
- Wng, K.; Tai, G.; Wong, K.H.; Lau, S.P.; Guo, W. Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv. 2011, 1, 022141. [Google Scholar] [CrossRef]
- Kula, P.; Rzepkowski, A.; Pietrasik, R.; Atraszkiewicz, R.; Dybowski, K.; Modrzyk, W. Method of Producing Graphene from Liquid. Metal. Patent No. EP 2865646, 7 May 2015. [Google Scholar]
- Kula, P.; Kaczmarek, L.; Zawadzki, P.; Kolodziejczyk, L.; Szymanski, W.; Niedzielski, P.; Pietrasik, R.; Dybowski, K.; Kazimierski, D.; Nowak, D. Functionality of graphene as a result of its heterogenic growth on SiC nanoparticles on the basis of reversible hydrogen storage. Int. J. Hydrogen Energy 2014, 39, 19662–19671. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.-J. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Lett. 2012, 13, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Arellano, J.S.; Molina, L.M.; Rubio, A.; Alonso, J.A. Density functional study of adsorption of molecular hydrogen on graphene layers. J. Chem. Phys. 2000, 112, 8114. [Google Scholar] [CrossRef] [Green Version]
- Yun, W.; Li, B.; Li, L. A green synthetic approach to graphene nanosheets for hydrogen adsorption. Appl. Surf. Sci. 2011, 257, 10183–10187. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, X.; Zhang, J.; Yan, X.; Liu, Y.; Yuan, A. Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites. Int. J. Hydrogen Energy 2014, 39, 2160–2167. [Google Scholar] [CrossRef]
- Panella, B.; Hirscher, M.; Roth, S. Hydrogen adsorption in different carbon nanostructures. Carbon 2005, 43, 2209–2214. [Google Scholar] [CrossRef]
- Schur, D.; Zaginaichenko, S.Y.; Savenko, A.F.; Bogolepov, A.V.; Anikina, S.N.; Zolotarenko, D.A.; Matysina, A.Z.; Veziroglu, N.T.; Skryabina, N. Hydrogenation of Fullerite C60 in Gaseous Phase. In Carbon Nanomaterials in Clean Energy Hydrogen Systems; II. NATO Science for Peace and Security Series C: Environmental Security; Zaginaichenko, S., Schur, D., Skorokhod, V., Veziroglu, A., İbrahimoğlu, B., Eds.; NATO: Brussels, Belgium, 2011; pp. 87–105. [Google Scholar]
- Luzan, S.M.; Yury, O.; Tsybin, A.; Talyzin, V. Reaction of C60 with Hydrogen Gas: In Situ Monitoring and Pathways. J. Phys. Chem. C 2011, 115, 11484–11492. [Google Scholar] [CrossRef]
- Talyzin, A.V.; Shulga, Y.M.; Jacob, A. Comparative Study of Hydrofullerides C 60 H x Synthesized by Direct and Catalytic Hydrogenation. Appl. Phys. A 2004, 78, 1005–1010. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Li, J.; Gu, B.L.; Duan, W. Alkali-metal-doped B80 as high-capacity hydrogen storage media. J. Phys. Chem. C 2008, 112, 19268–19271. [Google Scholar] [CrossRef]
- Teprovich, J.A.; Knight, D.A.; Peters, B.; Zidan, R. Comparative study of reversible hydrogen storage in alkali-doped fulleranes. J. Alloy. Compd. 2013, 580, 364–367. [Google Scholar] [CrossRef]
- Gundiah, G.; Govindaraj, A.; Rajalakshmi, N.; Dhathathreyan, K.S.; Rao, C.N.R. Hydrogen storage in carbon nanotubes and related materials. J. Mater. Chem. 2003, 13, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, Y.; Wu, C.Z.; Xu, S.T.; Cheng, H.M. Hydrogen storage in carbon nanotubes revisited. Carbon 2010, 48, 452–455. [Google Scholar] [CrossRef]
- Ioannatos, G.E.; Verykios, X.E. H2 storage on single- and multi-walled carbon nanotubes. Int. J. Hydrogen Energy 2010, 35, 622–628. [Google Scholar] [CrossRef]
- Nikitin, A.; Li, X.; Zhang, Z.; Ogasawara, H.; Dai, H.; Nilsson, A. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds. Nano Lett. 2008, 8, 162–167. [Google Scholar] [CrossRef]
- Yildirim, T.; Ciraci, S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. Phys. Rev. Lett. 2005, 94, 175501. [Google Scholar] [CrossRef] [Green Version]
- Durgun, E.; Ciraci, S.; Yildirim, T. Fictionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage. Phys. Rev. B 2008, 77, 085405–085408. [Google Scholar] [CrossRef] [Green Version]
- Seenithurai, S.; Pandyan, R.K.; Kumar, S.V.; Saranya, C.; Mahendran, M. Al-decorated carbon nanotube as the molecular hydrogen storage medium. Int. J. Hydrogen Energy 2014, 39, 11990–11998. [Google Scholar] [CrossRef]
- Larijani, M.M.; Safa, S. Increase of hydrogen storage capacity of CNTs by using Transition metal, Metal oxide-CNT nanocomposites. Acta Phys. Pol. A 2014, 126, 732–735. [Google Scholar] [CrossRef]
- Sankaran, M.; Viswanathan, B. Hydrogen storage in boron substituted carbon nanotubes. Carbon 2007, 45, 1628–1635. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Ramaprabhu, S. Hydrogen adsorption properties of single-walled carbon nanotube-nanocrystalline platinum composites. Int. J. Hydrogen Energy 2008, 33, 1028–1034. [Google Scholar]
- Yang, C.C.; Li, Y.J.; Chen, W.H. Electrochemical hydrogen storage behavior of single-walled carbon nanotubes (SWCNTs) coated with Ni nanoparticles. Int. J. Hydrogen Energy 2010, 35, 2336–2343. [Google Scholar] [CrossRef]
- Mehrabi, M.; Parvin, P.; Reyhani, A.; Mortazavi, S.Z. Hybrid laser ablation and chemical reduction to synthesize Ni/Pd nanoparticles decorated multi-wall carbon nanotubes for effective enhancement of hydrogen storage. Int. J. Hydrogen Energy 2018, 43, 12211–12221. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, H.; Han, K.S.; Kim, J.H.; Song, M.S.; Park, M.S. Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J. Phys. Chem. B 2005, 109, 8983. [Google Scholar] [CrossRef] [PubMed]
- Kayfeci, K.M. The synthesized nickel-doped multi-walled carbon nanotubes for hydrogen storage under moderate pressures. Int. J. Hydrogen Energy 2018, 43, 10773–10778. [Google Scholar]
- Suttisawat, Y.; Rangsunvigit, P.; Kitiyanan, B.; Williams, M.; Ndungu, P.; Lototosky, M.V.; Nechaev, A.; Linkov, V.; Kulprathipanja, S. Investigation of hydrogen storage capacity of multi-walled carbon nanotubes deposited with Pd or V. Int. J. Hydrogen Energy 2009, 34, 6669–6675. [Google Scholar] [CrossRef]
- Rather, S.; Zacharia, R.; Hwang, S.W.; Naik, M.; Nahm, K.S. Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method. Chem. Phys. Lett. 2007, 441, 261–267. [Google Scholar] [CrossRef]
- Vellingiri, L.; Annamalai, K.; Kandasamy, R.; Kombiah, I. Characterization and hydrogen storage properties of SnO2 functionalized MWCNT nanocomposites. Int. J. Hydrogen Energy 2018, 43, 10396–10409. [Google Scholar] [CrossRef]
- Vellingiri, L.; Annamalai, K.; Kandasamy, R.; Kombiah, I. Synthesis and characterization of MWCNT impregnated with different loadings of SnO2 nanoparticles for hydrogen storage applications. Int. J. Hydrogen Energy 2018, 43, 848–860. [Google Scholar] [CrossRef]
- Silambarasan, D.; Surya, V.J.; Vasu, V.; Iyakutti, K. Single Walled Carbon Nanotube−Metal Oxide Nanocomposites for Reversible and Reproducible Storage of Hydrogen. Appl. Mater. Interfaces 2013, 5, 11419. [Google Scholar] [CrossRef] [PubMed]
- Fangyi, C.; Jing, L.; Jianzhi, Z.; Zhanliang, T.; Jun, C. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem. Mater. 2008, 20, 1889–1895. [Google Scholar]
- Yan, L.; Dong-Lin, Z.; Yantao, W.; Risheng, X.; Zengmin, S.; Xingguo, L. The mechanism of hydrogen storage in carbon materials. Int. J. Hydrogen Energy 2007, 32, 2513–2517. [Google Scholar]
- Blankenship, T.S.; Balahmar, N.; Mokaya, R. Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat. Commun. 2017, 16, 1545. [Google Scholar] [CrossRef] [Green Version]
- Kula, P.; Szymanski, W.; Kolodziejczyk, L.; Atraszkiewicz, R.; Dybowski, K.; Grabarczyk, J.; Pietrasik, R.; Niedzielski, P.; Kaczmarek, L.; Clapa, M. High strength metallurgical graphene—Mechanisms of growth and properties. Arch. Metall. Mater. 2015, 60, 2535–2542. [Google Scholar] [CrossRef] [Green Version]
- Kula, P.; Szymanski, W.; Kolodziejczyk, L.; Atraszkiewicz, R.; Grabarczyk, J.; Clapa, M.; Kaczmarek, L.; Jedrzejczak, A.; Niedzielski, P. High strength metallurgical graphene for hydrogen storage nanocomposites. Vacuum 2016, 129, 79–85. [Google Scholar] [CrossRef]
- Kaczmarek, L.; Warga, T.; Zawadzki, P.; Makowicz, M.; Bocholc, B.; Kula, P. The influence of the hydrogenation degree on selected properties of graphene as a material for reversible H2 storage. Int. J. Hydrogen Energy 2019, 44, 23149–23159. [Google Scholar] [CrossRef]
- Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 2010, 48, 630–635. [Google Scholar] [CrossRef]
- Kostoglou, N.; Tzitzios, V.; Kontos, A.G.; Giannakopoulos, K.; Tampaxis, C.; Papavasiliou, A.; Charalambopoulou, G.; Steriotis, T.; Li, Y.; Liao, K.; et al. Synthesis of nanoporous graphene oxide adsorbents by freeze-drying or microwave radiation: Characterization and hydrogen storage properties. Int. J. Hydrogen Energy 2015, 40, 6844–6852. [Google Scholar] [CrossRef]
- Rajaura, R.S.; Srivastava, S.; Sharma, V.; Sharma, P.K.; Lal, C.; Singh, M.; Palsania, H.S.; Vijay, Y.K. Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. Int. J. Hydrogen Energy 2016, 41, 9454–9461. [Google Scholar] [CrossRef]
- Jin, Z.; Lu, W.; O’Neill, K.J.; Parilla, P.A.; Simpson, L.J.; Kittrell, C.; Tour, J.M. Nano-Engineered Spacing in Graphene Sheets for Hydrogen Storage. Chem. Mater. 2011, 23, 923–925. [Google Scholar] [CrossRef]
- Zuttel, A.; Sudan, P.; Mauron, P.; Wenger, P. Model for the hydrogen adsorption on carbon nanostructures. Appl. Phys. A 2004, 78, 941–946. [Google Scholar] [CrossRef]
- Wang, L.; Stuckert, N.R.; Yang, R.T. Unique hydrogen adsorption properties of graphene. AIChE J. 2011, 57, 2902–2908. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, M.; Kakkar, R. An evolving energy solution: Intermediate hydrogen storage. Int. J. Hydrogen Energy 2019, 43, 12168–12188. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, S.Y. Chapter 14—Adsorption Behaviors of Graphene and Graphene-related Materials. In Novel Carbon Adsorbents; Elsevier: Amsterdam, The Netherlands, 2012; pp. 435–467. [Google Scholar]
- Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Subrahmanyam, K.S.; Vivekchand, S.R.C.; Govindaraj, A.; Rao, C.N.R. A study of graphenes prepared by different methods: Characterization properties and solubilization. J. Mater. Chem. 2008, 18, 1517–1523. [Google Scholar] [CrossRef]
- Baburin, I.A.; Klechikov, A.; Mercier, G.; Talyzin, A.; Seifert, G. Hydrogen adsorption by perforated graphene. Int. J. Hydrogen Energy 2015, 40, 6594–6599. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Ihm, J.; Cohen, M.L.; Louie, S.G. Calcium-Decorated Graphene-Based Nanostructures for Hydrogen Storage. Nano Lett. 2010, 10, 793–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, A.; Zhu, Z.; Smith, S.C. Multifunctional Porous Graphene for Nanoelectronics and Hydrogen Storage: New Properties Revealed by First Principle Calculations. J. Am. Chem. Soc. USA 2010, 132, 2876–2877. [Google Scholar] [CrossRef]
- Ao, Z.M.; Peeters, F.M. High-capacity hydrogen storage in Al-adsorbed graphene. Phys. Rev. B 2010, 81, 205406. [Google Scholar] [CrossRef]
- Parambhath, V.B.; Nagar, R.; Ramaprabhu, S. Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 2012, 28, 7826–7833. [Google Scholar] [CrossRef]
- Ma, L.P.; Wu, Z.S.; Li, J.; Wu, E.D.; Ren, W.C.; Cheng, H.M. Hydrogen adsorption behavior of graphene above critical temperature. Int. J. Hydrogen Energy 2009, 34, 2329–2332. [Google Scholar] [CrossRef]
- Ghosh, A.; Subrahmanyam, K.S.; Krishna, K.S.; Datta, S.; Govindaraj, A.; Pati, S.K.; Rao, C.N.R. Uptake of H2 and CO2 by Graphene. J. Phys. Chem. C 2008, 112, 15704–15707. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chang, C.W.; Wu, Y.J.; Lueking, A.D. Observation and simulation of hydrogen storage via spillover. Curr. Opin. Chem. Eng. 2018, 21, 116–121. [Google Scholar] [CrossRef]
- Wang, L.F.; Lachawiec, A.J.; Yang, R.T. Nanostructured adsorbents for hydrogen storage at ambient temperature: High-pressure measurements and factors influencing hydrogen spillover. RSC Adv. 2013, 3, 23935–23952. [Google Scholar] [CrossRef]
- Zacharia, R.; Rather, S.; Hwang, S.W.; Nahm, K.S. Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes. Chem. Phys. Lett. 2007, 434, 286–291. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, D.; Zhang, C.; Zhou, X.; Xin, H.; Liu, X.; Cai, M. Spillover enhanced hydrogen uptake of Pt/Pd doped corncob-derived activated carbon with ultra-high surface area at high pressure. Int. J. Hydrogen Energy 2014, 39, 13643–13649. [Google Scholar] [CrossRef]
- Jain, V.; Kandasubramanian, B. Functionalized graphene materials for hydrogen storage. J. Mater. Sci. 2020, 55, 1865–1903. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.T. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. J. Am. Chem Soc. 2006, 128, 8136–8137. [Google Scholar] [CrossRef]
- Campesi, R.; Cuevas, F.; Latroche, M.; Hirscher, M. Hydrogen spillover measurements of unbridged and bridged metal—Organic frameworks—Revisited. Phys. Chem. Chem. Phys. 2010, 12, 10457–10459. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Zhang, J.; Yan, X.; Shen, X.; Yuan, A. High-capacity room-temperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst. Int. J. Hydrogen Energy 2015, 40, 12275–12285. [Google Scholar] [CrossRef]
- Faye, O. Metal adatom adsorption on graphene sheet: A first-principle study. Afr. Rev. Phys. 2012, 7, 313–318. [Google Scholar]
- Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. Clustering of Ti on a C60 surface and its effect on hydrogen storage. Am. Chem. Soc. 2005, 127, 14582–14583. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.I.; Jhi, S.H.; Kim, K.; Kim, Y.H. Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene: A first-principles study. Phys. Rev. B 2010, 81, 085441. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.; Hu, L.; Hu, X.; Yang, M.; Deng, J. Titanium-embedded graphene as high-capacity hydrogen-storage media. Int. J. Hydrogen Energy 2011, 36, 12324–12328. [Google Scholar] [CrossRef]
- Bajestani, Z.G.; Yurum, A.; Yurum, Y. Significant improvement in the hydrogen storage capacity of a reduced graphene oxide /TiO2 nanocomposite by chemical bonding of Ti-O-C. RSC Adv. 2016, 39, 32831–32838. [Google Scholar] [CrossRef] [Green Version]
- Choucair, M.; Mauron, P. Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption and due to the formation of Ti-O-C bonds. Int. J. Hydrogen Energy 2015, 40, 12324–12328. [Google Scholar] [CrossRef]
- Hong, W.G.; Kim, B.H.; Lee, S.M.; Yu, H.Y.; Yun, Y.J.; Jun, Y.; Lee, J.B.; Kim, H.J. Agent-free synthesis of graphene oxide/transition metal oxide composites and its application for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 7594–7599. [Google Scholar] [CrossRef]
- Gotzias, A.; Tylianakis, E.; Froudakis, G.; Steriotis, T. Theoretical study of hydrogen adsorption in oxygen functionalized carbon slit pores. Microporous Mesoporous Mater. 2012, 154, 38–44. [Google Scholar] [CrossRef]
- Giasafaki, D.; Bourlinos, A.; Charalambopoulou, G.; Stubos, A.; Steriotis, T. Synthesis and characterization of nanoporous carbon-metal composites for hydrogen storage. Microporous Mesoporous Mater. 2012, 154, 74–81. [Google Scholar] [CrossRef]
- Chung, T.-Y.; Tsao, C.-S.; Tseng, H.-P.; Chen, C.-H.; Yu, M.-S. Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon. J. Colloid Interface Sci. 2015, 441, 98–105. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, X.; Pan, R.; An, Y. A first-principles study of Sc-decorated graphene with pyridinic-N defects for hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 3106–3113. [Google Scholar] [CrossRef]
- Kim, G.; Jhi, S.H.; Park, N.; Louie, S.G.; Cohen, M.L. Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B 2008, 78, 085408. [Google Scholar] [CrossRef] [Green Version]
- Faye, O.; Eduok, U.; Szpunar, J.; Szpunar, B.; Samoura, A.; Beye, A. Hydrogen storage on bare Cu atom and Cu-functionalized boron-doped graphene: A first principles study. Int. J. Hydrogen Energy 2017, 42, 4233–4243. [Google Scholar] [CrossRef]
- Vinyan, B.P.; Nagar, R.; Ramaprabhu, S. Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. J. Mater. Chem. A 2013, 37, 11192–11199. [Google Scholar] [CrossRef]
- Ao, Z.; Dou, S.; Xu, Z.; Jiang, Q.; Wang, G. Hydrogen storage in porous graphene with Al decoration. Int. J. Hydrogen Energy 2014, 39, 16244–16251. [Google Scholar] [CrossRef]
- Ganji, M.D.; Emami, S.N.; Khosravi, A.; Abbasi, M. Si-decorated graphene: A promising media for molecular hydrogen storage. Appl Surf. Sci. 2015, 332, 105–111. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, D.; Gong, J.; Zhang, C.; Zhang, L.; Zhang, M.; Wu, X.; Kang, L. First-principles study of V-decorated porous graphene for hydrogen storage. Chem. Phys. Lett. 2019, 726, 57–61. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, N.; Li, J.; Liu, E.; He, C.; Shi, C. Hydrogen spillover storage on Ca-decorated graphene. Int. J. Hydrogen Energy 2012, 37, 11835–11841. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Wang, R. Prediction of hydrogen storage on Y-decorated graphene: A density functional theory study. Appl. Surf. Sci. 2014, 296, 204–208. [Google Scholar] [CrossRef]
- Tokarev, A.; Avdeenkov, A.V.; Langmi, H.; Bessarabov, D.G. Modeling hydrogen storage in boron-substituted graphene decorated with potassium metal atoms. Int. J. Energy Res. 2015, 39, 524–528. [Google Scholar] [CrossRef]
- Beheshti, E.; Nojeh, A.; Servati, P. First-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 2011, 49, 1561–1567. [Google Scholar] [CrossRef]
- Chakraborty, B.; Ray, P.; Garg, N.; Banerjee, S. High capacity reversible hydrogen storage in titanium doped 2D carbon allotrope Ψ-graphene: Density Functional Theory investigations. Int. J. Hydrogen Energy 2021, 46, 4154–4167. [Google Scholar] [CrossRef]
- Ismail, N.; Madian, M.; El-Shall, M.S. Reduced graphene oxide doped with Ni/Pd nanoparticles for hydrogen storage application. J. Ind. Eng. Chem. 2015, 30, 328–335. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Hu, R. Synthesis of three-dimensional hierarchically porous reduced graphene oxide–TiO2 nanocomposite for enhanced hydrogen storage. Ceram. Int. 2018, 44, 12458–12465. [Google Scholar] [CrossRef]
- Aboutalebi, S.H.; Yamini, S.A.; Nevirkovets, I.; Konstantinov, K.; Liu, H.K. Enhanced hydrogen storage in graphene oxide-MWCNTs composite at room temperature. Adv. Energy Mater. 2012, 2, 1439–1446. [Google Scholar] [CrossRef]
- Kim, B.H.; Hong, W.G.; Yu, Y.H.; Han, Y.K.; Lee, S.M.; Chang, S.J.; Moon, H.R.; Jun, Y.; Kim, H.J. Thermally modulated multilayered graphene oxide for hydrogen storage. Phys. Chem. Chem. Phys. 2012, 14, 1480–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masika, E.; Mokaya, R. Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage. Prog. Nat. Sci. Mater. 2013, 23, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, G.; Chen, L.; Pan, S.; Jing, X.; Wang, J.; Han, S. Enhanced hydrogen storage performances of LiBH4 modified with three-dimensional porous fluorinated graphene. Int. J. Hydrogen Energy 2017, 42, 15262–15270. [Google Scholar] [CrossRef]
- Luo, B.; Yao, Z.; Xiao, X.; Hang, Z.; Jiang, X.; Liu, M.; Chen, L. Hydrogen desorption from MgH2+NH4Cl/graphene composites at low temperatures. Mater. Chem. Phys. 2021, 263, 124342. [Google Scholar] [CrossRef]
- Ruse, E.; Buzaglo, M.; Pri-Bar, I.; Shunak, L.; Nadiv, R.; Pevzner, S.; Siton-Mendelson, O.; Skripnyuk, V.M.; Rabkin, E.; Regev, O. Hydrogen storage kinetics: The graphene nanoplatelet size effect. Carbon 2019, 130, 367–376. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4, 4324–4330. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Liu, J.; Lai, L.; Zhao, X.; Zhen, Y.; Lin, J.; Zhu, Y.; Ji, H.; Zhang, L.L.; Ruoff, R.S. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode. ACS Nano 2015, 9, 8609–8616. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Tian, X.; Fei, S.; You, K. Hierarchical porous graphene-based carbons prepared by carbon dioxide activation and their gas adsorption properties. Int. J. Hydrogen Energy 2014, 39, 11047–11054. [Google Scholar] [CrossRef]
- Lyth, S.; Shao, H.; Liu, J.; Sasaki, K.; Akiba, E. Hydrogen adsorption on graphene foam synthesized by combustion of sodium ethoxide. Int. J. Hydrogen Energy 2014, 39, 376–380. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra?Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25, 2554–2560. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qin, Y.; Tan, W.; Tao, Y.; Kong, Y. Smartly designed 3D N-doped mesoporous graphene for high-performance supercapacitor electrodes. Electrochim. Acta 2017, 241, 1–9. [Google Scholar] [CrossRef]
- Sui, Z.Y.; Cui, Y.; Zhu, J.H.; Han, B.H. Preparation of three-dimensional graphene oxide-polyethylenimine porous materials as dye and gas adsorbents. ACS Appl. Mater. Interfaces 2013, 5, 9172–9179. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Luo, S.; Tang, Y.; Chen, L. Direct Electrodeposition of Graphene Enabling the One-Step Synthesis of Graphene–Metal Nanocomposite Films. Small 2011, 7, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Tung, V.C.; Huang, J.H.; Tevis, I.; Kim, F.; Kim, J.; Chu, C.W.; Stupp, S.I.; Huang, J. Surfactant-free water-processable photoconductive all-carbon composite. J. Am. Chem. Soc. 2011, 133, 4940–4947. [Google Scholar] [CrossRef] [PubMed]
- Amiri, H.; Mohandesi, J.A.; Marashi, P. Tensile properties of pillared graphene block. Mater. Sci. Eng. B 2020, 257, 114557. [Google Scholar] [CrossRef]
- Moradi, M.; Mohandesi, J.A. Mechanical behavior of carbon nanotube and graphene junction as a building block for 3D carbon nanostructures. AIP Adv. 2015, 5, 117143. [Google Scholar] [CrossRef] [Green Version]
- Banda, H.; Perie, S.; Daffos, B.; Taberna, P.L.; Dubois, L.; Crosnier, O.; Simon, P.; Lee, D.; De Paepe, G.; Duclairoir, F. Sparsely pillared graphene materials for high-performance supercapacitors: Improving ion transport and storage capacity. ACS Nano 2019, 13, 1443–1453. [Google Scholar] [CrossRef]
- Kaczmarek, L.; Kula, P.; Warga, T.; Kolodziejczyk, L.; Louda, P.; Boruvkova, K.; Niedzielski, P.; Szymanski, W.; Volesky, L.; Pawlowski, W.; et al. Creation of a 3D structure based on the high strength metallurgical graphene®. Surf. Rev. Lett. 2019, 26, 1850206. [Google Scholar] [CrossRef]
- Jastrzebski, K.; Clapa, M.; Kaczmarek, L.; Kaczorowski, W.; Makowka, M.; Niedzielski, P.; Sobczyk-Guzenda, A.; Szymanowski, H.; Warga, T.; Zawadzki, P.; et al. Characterization and manufacturing of spatial graphene structures with high active surface area. Materials. under review..
- Mert, H.; Deniz, C.U.; Baykasoglu, C. Monte Carlo simulations of hydrogen adsorption in fullerene pillared graphene nanocomposites. Mol. Simul. 2020, 46, 650–659. [Google Scholar] [CrossRef]
- Deniz, C.U.; Mert, H.; Baykasoglu, C. Li-doped fullerene pillared graphene nanocomposites for enhancing hydrogen storage: A computational study. Comput. Mater. Sci. 2021, 186, 110023. [Google Scholar] [CrossRef]
- Liua, Y.; Zhang, Z.; Wang, T. Enhanced hydrogen storage performance of three-dimensional hierarchical porous graphene with nickel nanoparticles. Int. J. Hydrogen Energy 2018, 43, 11120–11131. [Google Scholar] [CrossRef]
- Kostoglou, N.; Liao, C.W.; Wang, C.Y.; Kondo, J.N.; Tampaxis, C.; Steriotis, T.; Giannakopoulos, K.; Kontos, A.G.; Hinder, S.; Baker, M.; et al. Effect of Pt nanoparticle decoration on the H2 storage performance of plasma-derived nanoporous graphene. Carbon 2021, 171, 294–305. [Google Scholar] [CrossRef]
- Kula, P.; Rzepkowski, A.; Pietrasik, R.; Atraszkiewicz, R.; Dybowski, K.; Kaczmarek, Ł.; Modrzyk, W. Nanocomposite Based on Graphene for Reversible Storage of. Hydrogen. Patent No. EP 2865637, 7 May 2015. [Google Scholar]
Material | H2 (wt.%) | Pressure (bar) | Temperature (K) | Remarks |
---|---|---|---|---|
Exfoliated graphene | 1.1–1.7 | 1 | 77 | [65,68,69,70,71,72,73] |
2.15–3 | 100 | 293–298 | ||
Graphene | 0.9–1.5 | 100 | 298 | [74,75,76,77,78] |
0.1 | 10 | 298 |
Material | H2 wt.% | Remarks |
---|---|---|
Graphene + Al | 13.8 | [81] |
Graphene + Al | 10.5 | [104] |
Graphene + Si | 15 | [105] |
Graphene + Li | 12 | [80] |
Graphene + Ti | 6.3 | [93] |
Graphene + V | 4.6 | [106] |
Graphene + Ca | 7.7 | [107] |
Graphene + Y | 5.8 | [108] |
Boron-doped graphene + K | 22,0 | [109] |
Boron-doped graphene + Ca | 8.0 | [110] |
Boron-doped graphene + Sc | 7.0 | [101] |
Nitrogen-doped graphene + Pb | 4.3 | [103] |
Ѱ-Graphene + Ti | 13.1 | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastrzębski, K.; Kula, P. Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene—A Review. Materials 2021, 14, 2499. https://doi.org/10.3390/ma14102499
Jastrzębski K, Kula P. Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene—A Review. Materials. 2021; 14(10):2499. https://doi.org/10.3390/ma14102499
Chicago/Turabian StyleJastrzębski, Krzysztof, and Piotr Kula. 2021. "Emerging Technology for a Green, Sustainable Energy-Promising Materials for Hydrogen Storage, from Nanotubes to Graphene—A Review" Materials 14, no. 10: 2499. https://doi.org/10.3390/ma14102499