Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Characterization of Ceramic Supports
2.3. The Synthesis of Surface Modifiers
2.4. Grafting Procedure
2.5. Physical Adsorption of Lipase
2.6. Covalent Immobilization of Lipase
2.7. Transesterification of (±)-1-Phenylethanol
2.8. Transesterification of (±)-1-Phenylethanol in the Membrane Reactor
3. Results and Discussion
3.1. Grafting Process of Al2O3 Powders and ZrO2 Membranes—Grafting Effectiveness
3.1.1. Al2O3 Powders
3.1.2. ZrO2 Ceramic Membranes
3.2. Enzyme Immobilization
3.2.1. Transesterification of (±)-1-Phenylethanol
3.2.2. Transesterification of (±)-1-Phenylethanol in the Membrane Reactor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, J.; Dong, G.; Ye, Y.; Chen, V. Laccase immobilization on titania nanoparticles and titania-functionalized membranes. J. Membr. Sci. 2014, 452, 229–240. [Google Scholar] [CrossRef]
- Durán, N.; Rosa, M.A.; D’Annibale, A.; Gianfreda, L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review. Enzyme Microb. Technol. 2002, 31, 907–931. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.S.; Khan, F.; Micklefield, J. Selective covalent protein immobilization: Strategies and applications. Chem. Rev. 2009, 109, 4025–4053. [Google Scholar] [CrossRef]
- Cabana, H.; Jones, J.P.; Agathos, S.N. Elimination of endocrine disrupting chemicals using white rot fungi and their lignin modifying enzymes: A review. Eng. Life Sci. 2007, 7, 429–456. [Google Scholar] [CrossRef]
- Zhou, F.; Luo, J.; Song, S.; Wan, Y. Nanostructured polyphenol-mediated coating: A versatile platform for enzyme immobilization and micropollutant removal. Ind. Eng. Chem. Res. 2020, 59, 2708–2717. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, J.; Li, S.; Wei, Y.; Wan, Y. Biocatalytic membrane based on polydopamine coating: A platform for studying immobilization mechanisms. Langmuir 2018, 34, 2585–2594. [Google Scholar] [CrossRef]
- Nong, L.; Zhang, Y.; Duan, Y.; Hu, S.; Lin, Y.; Liang, S. Engineering the regulatory site of the catalase promoter for improved heterologous protein production in pichia pastoris. Biotechnol. Lett. 2020, 42, 2703–2709. [Google Scholar] [CrossRef]
- Zhao, H.; Toe, C. “Water-like” ammonium-based ionic liquids for lipase activation and enzymatic polymerization. Proc. Biochem. 2020, 98, 59–64. [Google Scholar] [CrossRef]
- Khan, N.R.; Rathod, V.K. Microwave mediated lipase-catalyzed synthesis of n-butyl palmitate and thermodynamic studies. Biocatal. Agric. Biotechnol. 2020, 29, 101741. [Google Scholar] [CrossRef]
- Lu, Y.; Lv, Q.; Liu, B.; Liu, J. Immobilized candida antarctica lipase b catalyzed synthesis of biodegradable polymers for biomedical applications. Biomater. Sci. 2019, 7, 4963–4983. [Google Scholar] [CrossRef] [PubMed]
- Peris, E.; Porcar, R.; Burguete, M.I.; García-Verdugo, E.; Luis, S.V. Supported ionic liquid-like phases (sillps) as immobilised catalysts for the multistep and multicatalytic continuous flow synthesis of chiral cyanohydrins. ChemCatChem 2019, 11, 1955–1962. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Dallago, R.M.; Mignoni, M.L. Immobilization of candida antarctica b (calb) in silica aerogel: Morphological characteristics and stability. Biointerface Res. Appl. Chem. 2020, 10, 6744–6756. [Google Scholar] [CrossRef]
- Sokołowska, M.; Stachowska, E.; Czaplicka, M.; El Fray, M. Effect of enzymatic versus titanium dioxide/silicon dioxide catalyst on crystal structure of ‘green’ poly[(butylene succinate)-co-(dilinoleic succinate)] copolymers. Polym Int. 2020. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Hübner, R.; Tan, D.; Löffler, M.; Facsko, S.; Zhang, E.; Ge, Y.; Qi, Z.; Wu, C. Enzymes immobilized on carbon nitride (C3N4) cooperating with metal nanoparticles for cascade catalysis. Adv. Mater. Interfaces 2019, 6. [Google Scholar] [CrossRef]
- Souza, M.C.M.D.; Santos, K.P.D.; Freire, R.M.; Barreto, A.C.H.; Fechine, P.B.A.; Gonçalves, L.R.B. Production of flavor esters catalyzed by lipase b from candida antarctica immobilized on magnetic nanoparticles. Braz. J. Chem. Eng. 2017, 34, 681–690. [Google Scholar] [CrossRef]
- Asuri, P.; Karajanagi, S.S.; Yang, H.; Yim, T.J.; Kane, R.S.; Dordick, J.S. Increasing protein stability through control of the nanoscale environment. Langmuir 2006, 22, 5833–5836. [Google Scholar] [CrossRef]
- Zimmermann, Y.S.; Shahgaldian, P.; Corvini, P.F.X.; Hommes, G. Sorption-assisted surface conjugation: A way to stabilize laccase enzyme. Appl. Microbiol. Biotechnol. 2011, 92, 169–178. [Google Scholar] [CrossRef]
- Sahoo, B.; Sahu, S.K.; Pramanik, P. A novel method for the immobilization of urease on phosphonate grafted iron oxide nanoparticle. J. Mol. Catal. B Enzym. 2011, 69, 95–102. [Google Scholar] [CrossRef]
- Modenez, I.A.; Sastre, D.E.; Moares, F.C.; Marques Netto, C.G.C. Influence of dlutaraldehyde cross-linking modes on the recyclability of immobilized lipase b from candida antarctica for transesterification of soy bean oil. Molecules 2018, 23, 2230. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Qi, L.; Luo, Z. Pickering emulsion-based microreactors for size-selective interfacial enzymatic catalysis. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Gholamzadeh, P.; Mohammadi Ziarani, G.; Badiei, A. Immobilization of lipases onto the sba-15 mesoporous silica. Biocatal. Biotransform. 2017, 35, 131–150. [Google Scholar] [CrossRef]
- Vanangamudi, A.; Dumée, L.F.; Duke, M.C.; Yang, X. Dual functional ultrafiltration membranes with enzymatic digestion and thermo-responsivity for protein self-cleaning. Membranes 2018, 8, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanangamudi, A.; Saeki, D.; Dumée, L.F.; Duke, M.; Vasiljevic, T.; Matsuyama, H.; Yang, X. Surface-engineered biocatalytic composite membranes for reduced protein fouling and self-cleaning. ACS Appl. Mater. Interfaces 2018, 10, 27477–27487. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, M.S.; Farhadyar, N.; Zare, K. Improvement of the alkaline protease properties via immobilization on the TiO2 nanoparticles supported by mesoporous mcm-41. Superlattices Microstruct. 2009, 46, 77–83. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Hu, N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: Direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 2004, 49, 1981–1988. [Google Scholar] [CrossRef]
- Kujawa, J.; Al-Gharabli, S.; Kujawski, W.; Knozowska, K. Molecular grafting of fluorinated and nonfluorinated alkylsiloxanes on various ceramic membrane surfaces for the removal of volatile organic compounds applying vacuum membrane distillation. ACS Appl. Mater. Interfaces 2017, 9, 6571–6590. [Google Scholar] [CrossRef] [PubMed]
- Good, R.J. Spreading pressure and contact angle. J. Colloid Interface Sci. 1975, 52, 308–313. [Google Scholar] [CrossRef]
- Rowley, H.H.; Innes, W.B. Relationships between the spreading pressure, adsorption, and wetting. J. Phys. Chem. 1942, 46, 694–705. [Google Scholar] [CrossRef]
- Bikerman, J.J. The nature of the equilibrium spreading pressure. Kolloid-Zeitschrift und Zeitschrift für Polymere 1963, 191, 33–35. [Google Scholar] [CrossRef]
- Kujawa, J.; Kujawski, W.; Koter, S.; Rozicka, A.; Cerneaux, S.; Persin, M.; Larbot, A. Efficiency of grafting of Al2O3, TiO2 and ZrO2 powders by perfluoroalkylsilanes. Colloid. Surface A 2013, 420, 64–73. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Characterization of the surface modification process of Al2O3, TiO2 and ZrO2 powders by pfas molecules. Colloids Surf. A 2014, 447, 14–22. [Google Scholar] [CrossRef]
- Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [Google Scholar] [CrossRef]
- Monge-Marcet, A.; Cattoën, X.; Dieudonné, P.; Pleixats, R.; Wong Chi Man, M. Nanostructuring of ionic bridged silsesquioxanes. Chem. Asian J. 2013, 8, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Mihai, S.; Cazacu, A.; Arnal-Herault, C.; Nasr, G.; Meffre, A.; van der Lee, A.; Barboiu, M. Supramolecular self-organization in constitutional hybrid materials. New J. Chem. 2009, 33, 2335–2343. [Google Scholar] [CrossRef]
- Issa, A.A.; Luyt, A.S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceynowa, J.; Koter, I. Lipase-catalyzed kinetic resolution of (r,s)-1-phenylethyl propionate in an enzyme membrane reactor. Acta Biotechnol. 1997, 17, 253–263. [Google Scholar] [CrossRef]
- Holmberg, E.; Hult, K. Temperature as an enantioselective parameter in enzymatic resolutions of racemic mixtures. Biotechnol. Lett. 1991, 13, 323–326. [Google Scholar] [CrossRef]
- Kruger, N.J. The bradford method for protein quantitation. In The Protein Protocols Handbook; Walker, J.M., Ed.; Springer Protocols Handbooks; Humana Press: Totowa, NJ, USA, 2009; pp. 17–24. [Google Scholar]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Silva, S.S.; Ferreira, R.A.S.; Fu, L.; Carlos, L.D.; Mano, J.F.; Reis, R.L.; Rocha, J. Functional nanostructured chitosan–siloxane hybrids. J. Mater. Chem. 2005, 15, 3952–3961. [Google Scholar] [CrossRef] [Green Version]
- Velazquez-Morales, P.; Le Nest, J.-F.; Gandini, A. Polymer electrolytes derived from chitosan/polyether networks. Electrochim. Acta 1998, 43, 1275–1279. [Google Scholar] [CrossRef]
- De Zea Bermudez, V.; Carlos, L.D.; Alcácer, L. Sol−gel derived urea cross-linked organically modified silicates. 1. Room temperature mid-infrared spectra. Chem. Mater. 1999, 11, 569–580. [Google Scholar] [CrossRef]
- Knozowska, K.; Li, G.; Kujawski, W.; Kujawa, J. Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. J. Membr. Sci. 2020, 599, 117814. [Google Scholar] [CrossRef]
- Reyes Bahena, J.L.; Robledo Cabrera, A.; López Valdivieso, A.; Herrera Urbina, R. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina–aqueous electrolyte interface. Sep. Sci Technol. 2002, 37, 1973–1987. [Google Scholar] [CrossRef]
- Yang, D.; Krasowska, M.; Sedev, R.; Ralston, J. The unusual surface chemistry of α-Al2O3 (0001). Phys. Chem. Chem. Phys. 2010, 12, 13724–13729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Banfield, J.F. Interatomic coulombic interactions as the driving force for oriented attachment. CrystEngComm 2014, 16, 1568–1578. [Google Scholar] [CrossRef]
- Christenson, H.K. Dlvo (derjaguin–landau–verwey–overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc. 1984, 80, 1933–1946. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ong, B.C. Critical zeta potential and the hamaker constant of oxides in water. Powder Technol. 2003, 134, 249–254. [Google Scholar] [CrossRef]
- Liu, Y.D.; Choi, H.J. Electrorheological fluids: Smart soft matter and characteristics. Soft Matter 2012, 8, 11961–11978. [Google Scholar] [CrossRef]
- Leong, Y.-K.; Ong, B.-C. Polyelectrolyte-mediated interparticle forces in aqueous suspensions: Molecular structure and surface forces relationship. Chem. Eng. Res. Des. 2015, 101, 44–55. [Google Scholar] [CrossRef]
- Kujawa, J. From nanoscale modification to separation—The role of substrate and modifiers in the transport properties of ceramic membranes in membrane distillation. J. Membr. Sci. 2019, 580, 296–306. [Google Scholar] [CrossRef]
- Kujawa, J.; Kujawski, W.; Cyganiuk, A.; Dumée, L.F.; Al-Gharabli, S. Upgrading of zirconia membrane performance in removal of hazardous vocs from water by surface functionalization. Chem. Eng. J. 2019. [Google Scholar] [CrossRef]
- Dalvi, V.H.; Rossky, P.J. Molecular origins of fluorocarbon hydrophobicity. P. Natl. Acad. Sci. 2010, 107, 13603–13607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L.J.; Akhavan, B.; Bilek, M.M.M. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat. Commun. 2018, 9, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwierz, N.; Horinek, D.; Liese, S.; Pirzer, T.; Balzer, B.N.; Hugel, T.; Netz, R.R. On the relationship between peptide adsorption resistance and surface contact angle: A combined experimental and simulation single-molecule study. J. Am. Chem. Soc. 2012, 134, 19628–19638. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, Y.; Li, H.; Meng, S.; Li, L.; Francisco, J.S.; Zeng, X.C. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proc. Natl. Acad. Sci. USA 2016, 113, 12946–12951. [Google Scholar] [CrossRef] [Green Version]
- Uppenberg, J.; Hansen, M.T.; Patkar, S.; Jones, T.A. The sequence, crystal structure determination and refinement of two crystal forms of lipase b from candida antarctica. Structure 1994, 2, 293–308. [Google Scholar] [CrossRef] [Green Version]
Particle Size [nm] | ζ Potential [mV] | Conductivity [µS cm−1] | Electrophoretic Mobility [µm cm V−1 s−1] | |
---|---|---|---|---|
Al2O3 | 116 | 42.98 | 5.8 | 3.35 |
Functionalization | ||||
C4H8NH2 | 289 | 25.64 | 6.9 | 2.00 |
C10H20NH2 | 540 | 42.04 | 2.8 | 3.28 |
C10H20O2NH2 | 376 | 42.31 | 2.4 | 3.30 |
C4H9 | 157 | 32.41 | 2.9 | 2.53 |
Enzyme Immobilization | ||||
C4H8NH2 + E | 493 | 40.87 | 6.0 | 3.18 |
C10H20NH2 + E | 608 | 39.70 | 2.6 | 3.03 |
C10H20O2NH2 + E | 452 | 38.93 | 2.8 | 3.03 |
C4H9 + E | 193 | 31.53 | 2.6 | 2.45 |
CAcor (deg) | Wadh (mN m−1) | S (mN m−1) | |
---|---|---|---|
Pristine | 32.5 ± 1.5 | 134.2 ± 2.2 | −11.38 ± 0.23 |
Functionalization | |||
organic spacer | |||
C4H8NH2 | 71.0 ± 1.5 | 96.5 ± 1.4 | −49.14 ± 0.36 |
C10H20NH2 | 86.9 ± 1.5 | 76.7 ± 1.7 | −68.88 ± 0.41 |
C10H20O2NH2 | 57.3 ± 1.5 | 112.1 ± 2.3 | −33.46 ± 0.28 |
C4H9 | 103.7± 1.5 | 55.6 ± 1.3 | −90.03 ± 0.48 |
Enzyme Immobilization | |||
C4H8NH2 + E | 58.5 ± 1.5 | 110.8 ± 2.2 | −34.76 ± 0.33 |
C10H20NH2 + E | 67.3 ± 1.5 | 100.9 ± 2.0 | −44.68 ± 0.39 |
C10H20O2NH2 + E | 61.4 ± 1.5 | 107.6 ± 2.2 | −37.97 ± 0.35 |
C4H9 + E | 67.1 ± 1.5 | 102.5 ± 1.9 | −43.14 ± 0.41 |
Powder | Mass of lipase per mass of support (mg g−1) | Specific activity (μmol min−1 mg−1) | Conversion * (%) | eeS (%) | eeP (%) | E ** |
---|---|---|---|---|---|---|
C4H8NH2 + E | 6.12 | 0.22 | 30 | 42 | 98 | 120 |
C10H20NH2 + E | 7.83 | 0.81 | 42 | 71 | 99 | >200 |
C10H20O2NH2 + E | 13.85 | 1.20 | 41 | 68.5 | 99 | >200 |
C4H9 + E | 15.28 | 4.25 | 34 *** | 49 | 95.5 | 65 |
Membrane | Mass of lipase per membrane area (g m−2) | Specific activity (μmol min−1 mg−1) | Conversion * (%) | eeS (%) | eeP (%) | E ** |
---|---|---|---|---|---|---|
C4H8NH2 + E | 0.772 | 0.96 | 40 | 66 | 98 | >200 |
C10H20NH2 + E | 0.503 | 1.67 | 32 | 46.5 | 99 | >200 |
C10H20O2NH2 + E | 0.672 | 1.61 | 37 | 58 | 99 | >200 |
C4H9 + E | 1.494 | 1.19 | 44 | 74 | 95 | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawa, J.; Głodek, M.; Koter, I.; Ośmiałowski, B.; Knozowska, K.; Al-Gharabli, S.; Dumée, L.F.; Kujawski, W. Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach. Materials 2021, 14, 201. https://doi.org/10.3390/ma14010201
Kujawa J, Głodek M, Koter I, Ośmiałowski B, Knozowska K, Al-Gharabli S, Dumée LF, Kujawski W. Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach. Materials. 2021; 14(1):201. https://doi.org/10.3390/ma14010201
Chicago/Turabian StyleKujawa, Joanna, Marta Głodek, Izabela Koter, Borys Ośmiałowski, Katarzyna Knozowska, Samer Al-Gharabli, Ludovic F. Dumée, and Wojciech Kujawski. 2021. "Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach" Materials 14, no. 1: 201. https://doi.org/10.3390/ma14010201
APA StyleKujawa, J., Głodek, M., Koter, I., Ośmiałowski, B., Knozowska, K., Al-Gharabli, S., Dumée, L. F., & Kujawski, W. (2021). Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization—Material Approach. Materials, 14(1), 201. https://doi.org/10.3390/ma14010201