Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Superlattice Structure
2.2. Numerical Simulation
2.3. Experimental Setup
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhan, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 1993, 71, 2022. [Google Scholar] [CrossRef] [PubMed]
- Dowling, J.P. Sonic band structure in fluids with periodic density variations. J. Acoust. Soc. Am. 1992, 91, 2539–2543. [Google Scholar] [CrossRef]
- Krokhin, A.A.; Arriaga, J.; Gumen, L.N. Speed of sound in periodic elastic composites. Phys. Rev. Lett. 2003, 91, 264302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Wu, F.; Fu, X.; Liu, Y. Effective elastic parameters of the two-dimensional phononic crystal. Phys. Rev. E 2005, 71, 037604. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Dehesa, J.; Krokhin, A. Introduction to acoustics of phononic crystals. Homogenization at low frequencies. In Phononic Crystals; Springer: New York, NY, USA, 2016; pp. 1–21. [Google Scholar]
- Lu, M.-H.; Feng, L.; Chen, Y.-F. Phononic crystals and acoustic metamaterials. Mater. Today 2009, 12, 34–42. [Google Scholar] [CrossRef]
- Shen, C.; Xie, Y.; Sui, N.; Wang, W.; Cummer, S.; Jing, Y. Broadband Acoustic Hyperbolic Metamaterial. Phys. Rev. Lett. 2015, 115, 254301. [Google Scholar] [CrossRef] [Green Version]
- Zubov, Y.; Djafari-Rouhani, B.; Jin, Y.; Sofield, M.; Walker, E.; Neogi, A.; Krokhin, A. Long-range nonspreading propagation of sound beam through periodic layered structure. Commun. Phys. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- García-Chocano, V.M.; Christensen, J.; Sánchez-Dehesa, J. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics. Phys. Rev. Lett. 2014, 112, 144301. [Google Scholar] [CrossRef] [Green Version]
- Page, J.H.; Yang, S.; Liu, Z.; Cowan, M.L.; Chan, C.T.; Sheng, P. Tunneling and dispersion in 3D phononic crystals. Z. für Krist.-Cryst. Mater. 2005, 220, 859–870. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Khanikaev, A.B.; Wang, Z. Topologically protected elastic waves in phononic metamaterials. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2016, 2, e1501595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Cortes, C.L.; Molesky, S.; Jacob, Z. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 2012, 101, 131106. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, Z.; Qiu, C. Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal. Phys. Rev. B 2006, 73, 054302. [Google Scholar] [CrossRef]
- Kaya, O.A.; Cicek, A.; Ulug, B. Self-collimated slow sound in sonic crystals. J. Phys. D Appl. Phys. 2012, 45, 365101. [Google Scholar] [CrossRef]
- Walker, E.L.; Jin, Y.; Reyes, D.; Neogi, A. Sub-wavelength lateral detection of tissue-approximating masses using an ultrasonic metamaterial lens. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Jin, Y.; Choi, T.-Y.; Dahotre, N.; Neogi, A. Mechanically tunable ultrasonic metamaterial lens with a subwavelength resolution at long working distances. Smart Mater. Struct. 2020, 30, 015022. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, L.; Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 2009, 102, 194301. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Guo, S.; Li, B.; Liu, Y.; He, S. An acoustic metamaterial lens for acoustic point-to-point communication in air. Acoust. Phys. 2019, 65, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Kim, S.; Fang, N.X. Far-field acoustic subwavelength imaging and edge detection based on spatial filtering and wave vector conversion. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Walker, E.L.; Reyes-Contreras, D.; Jin, Y.; Neogi, A. Tunable Hybrid Phononic Crystal Lens Using Thermo-Acoustic Polymers. ACS Omega 2019, 4, 16585–16590. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.N. Ultrasound imaging. Phys. Med. Biol. 2006, 51, R83. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.; Perlas, A. Basics of ultrasound imaging. In Atlas of Ultrasound-Guided Procedures in Interventional Pain Management; Springer: New York, NY, USA, 2011; pp. 13–19. [Google Scholar]
- Fenster, A.; Downey, D.B.; Cardinal, H.N. Three-dimensional ultrasound imaging. Phys. Med. Biol. 2001, 46, R67. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Walker, E.; Krokhin, A.; Heo, H.; Choi, T.-Y.; Neogi, A. Enhanced instantaneous elastography in tissues and hard materials using bulk modulus and density determined without externally applied material deformation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Walker, E.; Heo, H.; Krokhin, A.; Choi, T.-Y.; Neogi, A. Nondestructive ultrasonic evaluation of fused deposition modeling based additively manufactured 3D-printed structures. Smart Mater. Struct. 2020, 29, 045020. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, T.; Heo, H.; Krokhin, A.; Shi, S.Q.; Dahotre, N.; Choi, T.-Y.; Neogi, A. Novel 2D Dynamic Elasticity Maps for Inspection of Anisotropic Properties in Fused Deposition Modeling Objects. Polymers 2020, 12, 1966. [Google Scholar] [CrossRef]
- Ostrovskii, I.V.; Nadtochiy, A.B.; Klymko, V.A. Velocity dispersion of plate acoustic waves in a multidomain phononic superlattice. Phys. Rev. B 2010, 82, 014302. [Google Scholar] [CrossRef]
- Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235–238. [Google Scholar] [CrossRef]
- Arregui, G.; Lanzillotti-Kimura, N.D.; Sotomayor-Torres, C.M.; García, P.D. Anderson photon-phonon colocalization in certain random superlattices. Phys. Rev. Lett. 2019, 122, 043903. [Google Scholar] [CrossRef] [Green Version]
- Yudistira, D.; Boes, A.; Janner, D.; Pruneri, V.; Friend, J.; Mitchell, A. Polariton-based band gap and generation of surface acoustic waves in acoustic superlattice lithium niobate. J. Appl. Phys. 2013, 114, 054904. [Google Scholar] [CrossRef]
- Yang, G.Y.; Du, J.K.; Huang, B.; Jin, Y.A.; Xu, M.H. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer. AIP Adv. 2017, 7, 045206. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.; Garcia de Abajo, F.J. Negative refraction and backward waves in layered acoustic metamaterials. Phys. Rev. B 2012, 86, 02431. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Zubov, Y.; Yang, T.; Choi, T.-Y.; Krokhin, A.; Neogi, A. Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice. Materials 2021, 14, 125. https://doi.org/10.3390/ma14010125
Jin Y, Zubov Y, Yang T, Choi T-Y, Krokhin A, Neogi A. Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice. Materials. 2021; 14(1):125. https://doi.org/10.3390/ma14010125
Chicago/Turabian StyleJin, Yuqi, Yurii Zubov, Teng Yang, Tae-Youl Choi, Arkadii Krokhin, and Arup Neogi. 2021. "Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice" Materials 14, no. 1: 125. https://doi.org/10.3390/ma14010125
APA StyleJin, Y., Zubov, Y., Yang, T., Choi, T.-Y., Krokhin, A., & Neogi, A. (2021). Spatial Decomposition of a Broadband Pulse Caused by Strong Frequency Dispersion of Sound in Acoustic Metamaterial Superlattice. Materials, 14(1), 125. https://doi.org/10.3390/ma14010125