Synthesis of FePcS–PMA–LDH Cointercalation Composite with Enhanced Visible Light Photo-Fenton Catalytic Activity for BPA Degradation at Circumneutral pH
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of FePcS–PMA–LDH
2.2. Characterization
2.3. Photocatalytic Tests and Analytical Methods
3. Results
3.1. Characterization of Catalyst
3.2. Catalytic Performance of Samples
3.3. Photo-Fenton Mechanism Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, W.; Brigante, M.; Wu, F.; Mousty, C.; Hanna, K.; Mailhot, G. Assessment of the Fe(III)–EDDS Complex in Fenton-Like Processes: From the Radical Formation to the Degradation of Bisphenol A. Environ. Sci. Technol. 2013, 47, 1952–1959. [Google Scholar] [CrossRef]
- Ortega-Gómez, E.; Martín, M.; Carratalà, A.; Ibañez, P.; Pérez, J.; Pulgarín, C. Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and μM concentrations of H2O2 and Fe2+/Fe3+. Appl. Catal. B Environ. 2015, 174, 395–402. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.; Li, X.; Zhang, J.; Fang, J.; Guan, Y. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environ. Sci. Technol. 2011, 45, 3925–3930. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, J.; Durán, A.; Aguirre, M.; San, M. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process. J. Hazard. Mater. 2011, 185, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Brigante, M.; Wu, F.; Hanna, K.; Mailhot, G. Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes. J. Photochem. Photobiol. A Chem. 2012, 239, 17–23. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, P.; Zhang, X.; Wang, X.; Zhu, N.; Wu, J. Intercalation of Fe(III) complexes into layered double hydroxides: Synthesis and structural preservation. Appl. Clay Sci. 2012, 65, 87–94. [Google Scholar] [CrossRef]
- Silva, M.; Calvete, M.; Goncalves, N.; Burrows, H.; Sarakha, M.; Fernandes, A. Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. J. Hazard. Mater. 2012, 233, 79–88. [Google Scholar] [CrossRef]
- Sorokin, A. Phthalocyanine metal complexes in catalysis. Chem. Rev. 2013, 113, 8152–8191. [Google Scholar] [CrossRef]
- Granados-Oliveros, G.; Páez-Mozo, E.; Ortega, F.; Ferronato, C.; Chovelon, J.-M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl. Catal. B Environ. 2009, 89, 448–454. [Google Scholar] [CrossRef]
- Kim, W.; Park, J.; Jo, H.; Kim, H.; Choi, W. Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins. J. Phys. Chem. 2008, 112, 491–499. [Google Scholar] [CrossRef]
- Shen, C.; Song, S.; Zang, L.; Kang, X.; Wen, Y.; Liu, W. Efficient removal of dyes in water using chitosan microsphere supported cobalt (II) tetrasulfophthalocyanine with H2O2. J. Hazard. Mater. 2010, 177, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Ozoemena, K.; Kuznetsova, N.; Nyokong, T. Comparative photosensitised transformation of polychlorophenols with different sulphonated metallophthalocyanine complexes in aqueous medium. J. Mol. Catal. A Chem. 2001, 176, 29–40. [Google Scholar] [CrossRef]
- Spiller, W.; Kliesch, H.; Hackbarth, S. Singlet Oxygen Quantum Yields of Different Photosensitizers in Polar Solvents and Micellar Solutions. J. Porphyr. Phthalocyanines 1998, 2, 145–158. [Google Scholar] [CrossRef]
- Lei, P.; Chen, C.; Yang, J.; Wan, M.; Zhao, J.; Zang, L. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environ. Sci. Technol. 2005, 39, 8466–8474. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C 2007, 111, 5259–5275. [Google Scholar] [CrossRef]
- Yoon, M.; Chang, J.A.; Kim, Y.; Choi, J.R. Heteropoly Acid-Incorporated TiO2 Colloids as Novel Photocatalytic Systems Resembling the Photosynthetic Reaction Center. J. Phys. Chem. B 2001, 105, 2539–2545. [Google Scholar] [CrossRef]
- Ozer, R.; Ferry, J. Investigation of the Photocatalytic Activity of TiO2-Polyoxometalate Systems. Environ. Sci. Technol. 2001, 35, 3242–3246. [Google Scholar] [CrossRef]
- Chen, C.C.; Lei, P.X.; Ji, H.W.; Ma, W.H.; Zhao, J.C. Photocatalysis by Titanium Dioxide and Polyoxometalate/TiO2 Cocatalysts. Intermediates and Mechanistic Study. Environ. Sci. Technol. 2004, 38, 329–337. [Google Scholar] [CrossRef]
- Kholdeevaa, O.A.; Zalomaeva, O.V. Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coord. Chem. Rev. 2016, 306, 302–330. [Google Scholar] [CrossRef]
- Demel, J.; Lang, K. Layered Hydroxide-Porphyrin Hybrid Materials: Synthesis, Structure, and Properties. Eur. J. Inorg. Chem. 2012, 2012, 5154–5164. [Google Scholar] [CrossRef]
- Valente, J.; Tzompantzi, F.; Prince, J. Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. Appl. Catal. B Environ. 2011, 102, 276–285. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.; Martens, W.; Brown, R.; Hashib, M. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A review. Water Air Soil Pollut. 2011, 215, 3–29. [Google Scholar] [CrossRef]
- Abellán, G.; Busolo, F.; Coronado, E.; Martígastaldo, C.; Ribera, A. Hybrid Magnetic Multilayers by Intercalation of Cu(II) Phthalocyanine in LDH Hosts. J. Phys. Chem. C 2012, 116, 15756–15764. [Google Scholar] [CrossRef]
- Bourzami, R.; Eyele-Mezui, S.; Delahaye, E.; Drillon, M.; Rabu, P.; Parizel, N. New metal phthalocyanines/metal simple hydroxide multilayers: Experimental evidence of dipolar field-driven magnetic behavior. Inorg. Chem. 2014, 53, 1184–1194. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.; Bedell, S.; Worley, C. Tetra-Sulfo Iron-Phthalocyanine and Related Methods. U.S. Patent Application No. 8,318,005, 27 November 2012. [Google Scholar]
- Bderrazek, A.; Najoua, F.S.; Srasra, E. Synthesis and characterization of [Zn-Al] LDH:Study of the effect of calcination on the photocatalytic activity. Appl. Clay Sci. 2016, 119, 229–235. [Google Scholar] [CrossRef]
- Hadnadjev-Kostic, M.; Vulic, T.; Marinkovic-Neducin, R. Photo-induced properties of photocatalysts: A study on the modified structural, optical and textural properties of TiO2-ZnAl layered double hydroxide based materials. J. Clean. Prod. 2017, 164, 1–18. [Google Scholar] [CrossRef]
- Li, X.H.; Yu, Z.X.; Shao, L.Y.; Zeng, H.J.; Liu, Y.C.; Feng, X.F. A novel strategy to construct a visible-light-driven Z-scheme (ZnAl-LDH with active phase/g-C3N4) heterojunction catalyst via polydopamine bridge (a similar “bridge” structure). J. Hazard. Mater. 2020, 386, 121650. [Google Scholar] [CrossRef]
- Isupov, V.P.; Chupakhina, L.E.; Mitrofanova, R.P. Synthesis and thermolysis of lithium aluminum double hydroxide containing [Fe(OH)EDTA2−]. Russ. J. Inorg. Chem. 2009, 54, 204–210. [Google Scholar] [CrossRef]
- Suárez-Quezada, M.; Mantilla, A. H2 production by the water splitting reaction using photocatalysts derived from calcined ZnAl-LDH. Fuel 2019, 240, 262–269. [Google Scholar] [CrossRef]
- Liu, L.L.; Cheng, M.; Yang, Z.H. Improved performance of flower-like ZnAl-LDH growing on carbon nanotubes used in zincenickel secondary battery. Electrochim. Acta 2018, 227, 67–76. [Google Scholar]
- Xing, R.; Liu, N.; Liu, Y.; Wu, H.; Jiang, Y.; Chen, L. Novel Solid Acid Catalysts: Sulfonic Acid Group-Functionalized Mesostructured Polymers. Adv. Funct. Mater. 2007, 17, 2455–2461. [Google Scholar] [CrossRef]
- Liu, X.B.; Chang, F.X.; Xu, L.; Yang, Y.Z.; Liu, M. Preparation of ordered carbon/silica hybrid mesoporous materials with specific pore size expansion. Microporous Mesoporous Mater. 2005, 79, 269–273. [Google Scholar] [CrossRef]
- González, L.; Villa de, P.A.; Montes, D.; Sorokin, A. Allylic oxidation of cyclohexene over silica immobilized iron tetrasulfophthalocyanine. Tetrahedron Lett. 2006, 47, 6465–6468. [Google Scholar] [CrossRef]
- Li, T.T.; Liu, C.; Zhang, Z.; Li, B.A.; Yang, C. Preparation and Performance of POMs/PS/PVA Electrospinning Fiber Membranes. Chem. J. Chin. Univ. 2014, 35, 389–395. [Google Scholar]
- Sampurnam, S.; Dhanasekaran, T.; Narayanan, V. Synthesis, Characterization, and Photocatalytic activity of Silver nanoparticledoped Phosphomolybdic acid supportedZirconia. Mater. Today Proc. 2019, 14, 558–562. [Google Scholar] [CrossRef]
- Armatas, G.S.; Bilis, G.; Louloudi, M. Highly ordered mesoporous zirconia-polyoxometalate nanocomposite materials for catalytic oxidation of alkenes. J. Mater. Chem. 2011, 21, 2997–3005. [Google Scholar] [CrossRef]
- Xu, Z.P.; Jin, Y.; Liu, S.; Hao, Z.P.; Lu, G.Q. Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. J. Colloid Interface Sci. 2008, 326, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, X.; Xu, J.; Hou, W. Poly(ethylene glycol) haired layered double hydroxides as biocompatible nanovehicles: Morphology and dispersity study. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 585–591. [Google Scholar] [CrossRef]
- Sangwichien, C.; Aranovich, G.L.; Donohue, M.D. Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 313–320. [Google Scholar] [CrossRef]
- Gong, Q.J.; Liu, Y.; Dang, Z. Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light. J. Hazard. Mater. 2019, 371, 677–686. [Google Scholar] [CrossRef]
- Xu, T.; Liu, Y.; Ge, F.; Ouyang, Y. Simulated solar light photooxidation of azocarmine B over hydroxyl iron–aluminum pillared bentonite using hydrogen peroxide. Appl. Clay Sci. 2014, 100, 35–42. [Google Scholar] [CrossRef]
- Jiang, L.B.; Yuan, X.Z.; Zeng, G.M.; Liang, J. In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl. Catal. B Environ. 2018, 227, 376–385. [Google Scholar] [CrossRef]
- Leznoff, C.; Lever, A. Phthalocyanines. Properties and applications; Weinheim/VCH Publishers: New York, NY, USA, 1989; pp. 99–117. [Google Scholar]
- Stepanow, S.; Rizzini, A.L.; Krull, C.; Kavich, J.; Cezar, J.C.; Harris, F.Y.; Sheverdyaeva, P.M.; Moras, P.; Carbone, C.; Ceballos, G.; et al. Spin tuning of electron-doped metal-phthalocyanine Layers. J. Am. Chem. Soc. 2014, 136, 5451–5459. [Google Scholar] [CrossRef] [PubMed]
- Ponce, I.; Silva, J.F.; Onate, R.; Rezende, M.C.; Paez, M.A.; Zagal, J.H.; Pavez, J. Enhancement of the catalytic activity of Fe phthalocyanine for the reduction of O2 anchored to Au(111) via conjugated self-assembled monolayers of aromatic thiols as compared to Cu phthalocyanine. J. Phys. Chem. C 2012, 116, 15329–15341. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Chen, Y.; Gu, Y.; Wu, F.; Lu, W.Y.; Xu, T.F.; Chen, W.X. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron(II) phthalocyanine nanofibers: Intermediates and pathway. Water Res. 2016, 93, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.X.; Liu, Y. Heterogeneous photo-Fenton degradation of methylene blue under visible irradiation by iron tetrasulphophthalocyanine immobilized layered double hydroxide at circumneutral pH. Dye Pigment 2016, 134, 397–408. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, W.; Li, S.; Ma, H.; Chen, W.; Pang, H. Fabrication and electrochemical sensing performance of a composite film containing a phosphovanadomolybdate and cobalt(II) tetrasulfonate phthalocyanine. Sens. Actuators B Chem. 2013, 181, 773–781. [Google Scholar] [CrossRef]
- Agboola, B.; Pillay, J.; Makgopa, K.; Ozoemena, K. Electrochemical Characterization of Mixed Self-Assembled Films of Water-Soluble Single-Walled Carbon Nanotube-Poly (m-aminobenzene sulfonic acid) and Iron (II). J. Electrochem. Soc. 2010, 157, F159–F166. [Google Scholar] [CrossRef]
- Li, N.; Zhu, M.; Qu, M.; Gao, X.; Li, X.; Zhang, W. Iron-tetrasulfophthalocyanine functionalized graphene nanosheets: Attractive hybrid nanomaterials for electrocatalysis and electroanalysis. J. Electroanal. Chem. 2011, 651, 12–18. [Google Scholar] [CrossRef]
- Xia, J.; Ge, Y.; Di, J.; Xu, L.; Yin, S.; Chen, Z.; Liu, P.; Li, H. Ionic liquid-assisted strategy for bismuth-rich bismuth oxybromides nanosheets with superior visible light-driven photocatalytic removal of bisphenol-A. J. Colloid Interface Sci. 2016, 473, 112–119. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, S.; Xie, M.; Li, Y.; Jing, L.; Xu, H. Core–shell magnetic Ag/AgCl@Fe2O3 photocatalysts with enhanced photoactivity for eliminating bisphenol A and microbial contamination. New J. Chem. 2016, 40, 3413–3422. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Yin, S.; Xu, H.; Xu, L.; Xu, Y. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2014, 2, 5340–5351. [Google Scholar] [CrossRef]
- Zhou, M.; Wu, H.B.; Bao, J.; Xie, Y. Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. Angew. Chem. 2013, 52, 8741–8745. [Google Scholar] [CrossRef]
Samples | 2θ (°) | Basal Spacing (nm) (003) | ||
---|---|---|---|---|
(003) | (006) | (009) | ||
ZnAl–LDH | 9.88 | 19.68 | 33.78 | 0.894 |
FePcS–LDH | 8.52 | 18.26 | 32.22 | 1.037 |
FePcS–PMA–LDH | 8.44 | 18.08 | 32.36 | 1.046 |
Samples | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
ZnAl–LDH | 9 | 0.012 | 16.6 |
FePcS–LDH | 16 | 0.031 | 18.0 |
FePcS–PMA–LDH | 22 | 0.041 | 21.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, F.; Tian, S.; Qi, Y.; Li, E.; Zhou, L.; Qiu, Y. Synthesis of FePcS–PMA–LDH Cointercalation Composite with Enhanced Visible Light Photo-Fenton Catalytic Activity for BPA Degradation at Circumneutral pH. Materials 2020, 13, 1951. https://doi.org/10.3390/ma13081951
Huang F, Tian S, Qi Y, Li E, Zhou L, Qiu Y. Synthesis of FePcS–PMA–LDH Cointercalation Composite with Enhanced Visible Light Photo-Fenton Catalytic Activity for BPA Degradation at Circumneutral pH. Materials. 2020; 13(8):1951. https://doi.org/10.3390/ma13081951
Chicago/Turabian StyleHuang, Fenglian, Shiqiang Tian, Yan Qi, Erping Li, Liangliang Zhou, and Yaqun Qiu. 2020. "Synthesis of FePcS–PMA–LDH Cointercalation Composite with Enhanced Visible Light Photo-Fenton Catalytic Activity for BPA Degradation at Circumneutral pH" Materials 13, no. 8: 1951. https://doi.org/10.3390/ma13081951
APA StyleHuang, F., Tian, S., Qi, Y., Li, E., Zhou, L., & Qiu, Y. (2020). Synthesis of FePcS–PMA–LDH Cointercalation Composite with Enhanced Visible Light Photo-Fenton Catalytic Activity for BPA Degradation at Circumneutral pH. Materials, 13(8), 1951. https://doi.org/10.3390/ma13081951