Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Strength
3.2. Toughness
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Takaki, S.; Tsuchiyama, T.; Nakashima, K.; Hidaka, H.; Kawasaki, K.; Futamura, Y. Microstructure Development of Steel during Severe Plastic Deformation. Met. Mater. Int. 2004, 10, 533–539. [Google Scholar] [CrossRef]
- Kwon, H.; Cha, J.C.; Kim, C.H. The effect of grain size on fracture behaviour in tempered martensite embrittlement for AISI 4340 steel. Mater. Sci. Eng. 1988, 100, 121–128. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, J.S.; Lee, Y.K. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel. Scr. Mater. 2008, 59, 87–90. [Google Scholar] [CrossRef]
- Hansen, N.; Huang, X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998, 46, 1827–1836. [Google Scholar] [CrossRef]
- Eggeler, G.; Nilsvang, N.; Iischner, B. Microstructural changes in a 12% chromium steel during creep. Steel Res. 1987, 58, 97–103. [Google Scholar] [CrossRef]
- Maruyama, K.; Sawada, K.; Koike, J. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ Int. 2001, 41, 641–653. [Google Scholar] [CrossRef]
- Langford, G.; Cohen, M. Calculation of Cell-Size Strengthening of Wire-Drawn Iron. Metall. Trans. 1969, 1, 1478–1480. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. The first bulk nanostructured metal. Sci. Technol. Adv. Mater. 2013, 14, 014202. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Development of Hard Bainite. ISIJ Int. 2003, 43, 1238–1243. [Google Scholar] [CrossRef]
- Timokhina, I.; Beladi, H.; Xiong, X.Y.; Adachi, Y.; Hodgson, P.D. Application of Advanced Experimental Techniques for the Microstructural Characterization of Nanobainitic Steels. Solid State Phenom. 2011, 172–174, 1249–1254. [Google Scholar] [CrossRef]
- Ryaposov, I.V.; Kleiner, L.M.; Shatsov, A.A. Volume nanostructurization of low-carbon martensitic steels by thermal action. Met. Sci. Heat Treat. 2013, 54, 440–445. [Google Scholar] [CrossRef]
- Hu, F.; Wu, K.M.; Misra, R.D.K. Nanostructured martensite–austenite dual phase steels. Mater. Sci. Technol. 2012, 28, 1314–1319. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Zhang, Z.; Venkatasurya, P.K.C.; Somani, M.C.; Karjalainen, L.P. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion. Mater. Sci. Eng. A 2010, 527, 7779–7792. [Google Scholar] [CrossRef]
- Hidaka, H.; Kimura, Y.; Takaki, S. Consolidation of eutectoid steel powder with mechanical milling. J. Jpn. Soc. Powder Powder Metall. 1999, 46, 1256–1260. [Google Scholar] [CrossRef]
- Isheim, D.; Gagliano, M.S.; Fine, M.E.; Seidman, D.N. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 2006, 54, 841–849. [Google Scholar] [CrossRef]
- Tsuji, N.; Saito, Y.; Utsunomiya, H.; Tanigawa, S. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scr. Mater. 1999, 40, 795–800. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Ivanisenko, Y.V.; Rauch, E.F.; Baudelet, B. Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 1996, 44, 4705–4712. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, E.; Valiev, R.Z.; Zhu, Y. Tough Nanostructured Metals at Cryogenic Temperatures. Adv. Mater. 2004, 16, 328–331. [Google Scholar] [CrossRef]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys. J. Mater. Sci. 2010, 45, 4889–4894. [Google Scholar] [CrossRef]
- Jamaati, R.; Toroghinejad, M.R.; Amirkhanlou, S.; Edris, H. On the Achievement of Nanostructured Interstitial Free Steel by Four-Layer Accumulative Roll Bonding Process at Room Temperature. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 4013–4019. [Google Scholar] [CrossRef]
- Li, Y.; Raabe, D.; Herbig, M.; Choi, P.P.; Goto, S.; Kostka, A.; Yarita, H.; Borchers, C.; Kirchheim, R. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef] [PubMed]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Influence of Iron Oxide Particles on the Strength of Ball-Milled Iron. Mater. Trans. 2006, 47, 1508–1517. [Google Scholar] [CrossRef]
- Lesuer, D.R.; Syn, C.K.; Sherby, O.D. Nano-subgrain Strengthening in Ball-milled Iron. Mater. Sci. Eng. A 2006. [Google Scholar] [CrossRef]
- Morales-Rivas, L.; Yen, H.W.; Huang, B.M.; Kuntz, M.; Caballero, F.G.; Yang, J.R.; Garcia-Mateo, C. Tensile Response of Two Nanoscale Bainite Composite-Like Structures. JOM 2015, 67, 2223–2235. [Google Scholar] [CrossRef]
- Greben’kov, S.K.; Shatsov, A.A.; Larinin, D.M.; Kleiner, L.M. Strain hardening of low-carbon martensitic steels. Phys. Met. Metallogr. 2013, 114, 868–876. [Google Scholar] [CrossRef]
- Kleyner, L.M.; Larinin, D.M.; Shatsov, A.A. Nanostructured low-carbon lath martensite—Base for high structural strength of steels. Inorg. Mater. Appl. Res. 2014, 5, 289–292. [Google Scholar] [CrossRef]
- Miihkinen, V.T.T.; Edmonds, D.V. Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Technol. 1987, 3, 441–449. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. Nanostructured bainite. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 3–18. [Google Scholar] [CrossRef]
- Kirbis, P.; Pirtovšek, T.V.; Anžel, I.; Brunčko, M. Designing tough nanostructured bainite. In Proceedings of the Materials Science and Technology Conference and Exhibition 2017, MS and T 2017, Pittsburgh, PA, USA, 8–12 October 2017; Volume 1. [Google Scholar]
- Khare, S.; Lee, K.; Bhadeshia, H.K.D.H. Carbide-free bainite: Compromise between rate of transformation and properties. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2010, 41, 922–928. [Google Scholar] [CrossRef]
- Bhadeshia, H.K.D.H. The Nature, Mechanism and Properties of Strong Bainite. In Proceedings of the 1st International Symposium on Steel Science, Kyoto, Japan, 16–19 May 2007; pp. 17–26. [Google Scholar]
- Kang, M.; Zhang, M.X.; Zhu, M. In situ observation of bainite growth during isothermal holding. Acta Mater. 2006, 54, 2121–2129. [Google Scholar] [CrossRef]
- Hillert, M. Diffusion in growth of bainite. Metall. Mater. Trans. A 1994, 25, 1957–1966. [Google Scholar] [CrossRef]
- Shiflet, G.J.; Hackenberg, R.E. Partitioning and the growth of bainite. Scr. Mater. 2002, 47, 163–167. [Google Scholar] [CrossRef]
- Borgenstam, A.; Hillert, M.; Ågren, J. Metallographic evidence of carbon diffusion in the growth of bainite. Acta Mater. 2009, 57, 3242–3252. [Google Scholar] [CrossRef]
- Chang, L.C.; Bhadeshia, H.K.D.H. Stress-affected transformation to lower bainite. J. Mater. Sci. 1996, 31, 2145–2148. [Google Scholar] [CrossRef]
- Su, T.J.; Aeby-Gautier, E.; Denis, S. Morphology changes in bainite formed under stress. Scr. Mater. 2006, 54, 2185–2189. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Sourmail, T.; Caballero, F.G.; Smanio, V.; Kuntz, M.; Ziegler, C.; Leiro, A.; Vuorinen, E.; Elvira, R.; Teeri, T. Nanostructured Steel Industrialization: A Plausible Reality. Mater. Sci. Technol. 2013, 30, 1071–1078. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Chang, H.T.; Huang, B.M.; Huang, C.Y.; Yang, J.R. Microstructural characterization of Charpy-impact-tested nanostructured bainite. Mater. Charact. 2015, 107, 63–69. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, G.; Tian, J.; Hu, H.; Yuan, Q. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition. Metals 2017, 7, 263. [Google Scholar] [CrossRef]
Steel/Production Route | Ref. | |||
---|---|---|---|---|
Nanostructured carbide free lower bainite—Superbainite | [9] | |||
Nanostructured kinetically activated bainite (steel A0-current work) | ||||
Formation of fine bainite | [10] | |||
Nanostructured martensite | [11] | 1530 | ||
Nanostructured martensite/austenite dual phase steels | [12] | 2000 * | ||
Reverse transformed austenite | [13] | 1400 | ||
Mechanical milling | [14] | 2850 | ||
Nanoparticle strengthening | [15] | |||
ARB accumulative roll bonding | [16] | |||
HPT high pressure torsion | [17] | |||
ECAP Equal channel angular processing | [18] |
C | Si | Mn | Mo | Cr | V | Al | Ti | Nb | Other | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|
Steel A0 | 0.7 | 1.2 | 2.5 | 0.6 | 1.8 | 0.22 | 1.5 | 0.015 | 0.02 | <1 | Bal. |
Sample | Phases (vol.%) | Hardness (HRC) |
---|---|---|
Continuously cooled ① | Gama = 22%, Alfa = 78% | 61–62 |
Intercritically annealed ② | Gama = 27.8%, Alfa = 72.2% | 56–57 |
Aged Naturally for 12 days ③ | Gama = 0.7%, Alfa = 99.3% | 61–62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirbiš, P.; Anžel, I.; Rudolf, R.; Brunčko, M. Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials 2020, 13, 1220. https://doi.org/10.3390/ma13051220
Kirbiš P, Anžel I, Rudolf R, Brunčko M. Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials. 2020; 13(5):1220. https://doi.org/10.3390/ma13051220
Chicago/Turabian StyleKirbiš, Peter, Ivan Anžel, Rebeka Rudolf, and Mihael Brunčko. 2020. "Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength" Materials 13, no. 5: 1220. https://doi.org/10.3390/ma13051220
APA StyleKirbiš, P., Anžel, I., Rudolf, R., & Brunčko, M. (2020). Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials, 13(5), 1220. https://doi.org/10.3390/ma13051220