Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency
Abstract
:1. Introduction
2. Experimental
2.1. Materials and CMs Fabrication
- (i)
- (ii)
- Cheap Tubes Inc. (Grafton, VT, USA), carbon nanotubes (purity > 90.0%) as a filler, being 10–30 µm by length and 10–30 nm in average outer diameter.
2.2. Test Methods
3. Results and Discussion
3.1. DC Electrical Measurements
3.2. Dielectric Properties
3.3. Microwave Properties of CNT/PE Segregated Composites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, Y.; Li, Y.; Hua, W.; Zhang, A.; Bao, J. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces 2016, 8, 24131–24142. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Tjong, S.C. High dielectric permittivity and low loss tangent of polystyrene incorporated with hydrophobic core–shell copper nanowires. RSC Adv. 2015, 5, 38452–38459. [Google Scholar] [CrossRef]
- Song, W.-L.; Cao, M.-S.; Lu, M.-M.; Bi, S.; Wang, C.-Y.; Liu, J.; Yuan, J.; Fan, L.-Z. Flexible graphene-polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 2014, 66, 67–76. [Google Scholar] [CrossRef]
- Shen, B.; Zhai, W.; Tao, M.; Ling, J.; Zheng, W. Lightweight, multifunctional polyetherimide/-graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, K.; Dai, X.X.; Li, Y.; Guo, J.; Liu, H.; Li, G.H.; Tan, Y.J.; Zeng, J.B.; Guo, Z. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale 2017, 9, 11017–11026. [Google Scholar] [CrossRef]
- Cao, M.-S.; Wang, X.-X.; Cao, W.-Q.; Yuan, J. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017–10022. [Google Scholar] [CrossRef]
- Geetha, S.; Kumar, K.S.; Rao, C.R.; Vijayan, M.; Trivedi, D.C. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Abbas, N.; Kim, H.T. Multi-walled carbon nanotube/polyethersulfone nanocomposites for enhanced electrical conductivity, dielectric properties and efficient electromagnetic interference shielding at low thickness. Macromol. Res. 2016, 24, 1084–1090. [Google Scholar] [CrossRef]
- Shen, B.; Li, Y.; Zhai, W.; Zheng, W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS. Appl. Mater. Interfaces 2016, 8, 8050–8057. [Google Scholar] [CrossRef]
- Wu, D.; Gao, X.; Sun, J.; Wu, D.; Liu, Y.; Kormakov, S.; Zheng, X.; Wu, L.; Huang, Y.; Guo, Z. Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites. Compos. Part A 2017, 102, 88–95. [Google Scholar] [CrossRef]
- Deng, H.; Lin, L.; Ji, M.A.; Zhang, S.; Yang, M.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627–655. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Souza, F.G.; Sena, M.E.; Soares, B.G. Thermally stable conducting composites based on a carbon black-filled polyoxadiazole matrix. J. Appl. Polym. Sci. 2004, 93, 1631–1637. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, J.K.; Shi, Y.D.; Chen, Y.F.; Zeng, J.B.; Wang, M. Control of the crystalline morphology of poly(l-lactide) by addition of high-melting-point poly(L-lactide) and its effect on the distribution of multiwalled carbon nanotubes. J. Phys. Chem. B 2016, 120, 7423–7437. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, S.; Wang, G.N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V.R.; To, J.W. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59–64. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, H.O.; Shi, Y.D.; Chen, Y.F.; Zeng, J.B.; Guo, J.; Wang, B.; Guo, Z.; Wang, M. Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(Ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. J. Mater. Chem. C 2017, 5, 2807–2817. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, S.; Liu, L. A new approach to construct three dimensional segregated graphene structures in rubber composites for enhanced conductive, mechanical and barrier properties. J. Mater. Chem. C 2016, 4, 2353–2358. [Google Scholar] [CrossRef]
- Zhan, Y.; Oliviero, M.; Wang, J.; Sorrentino, A.; Buonocore, G.G.; Sorrentino, L.; Lavorgna, M.; Xia, H.; Iannace, S. Enhancing the EMI shielding of natural rubber-based supercritical CO2 foams by exploiting their porous morphology and CNT segregated networks. Nanoscale 2019, 11, 1011–1020. [Google Scholar] [CrossRef]
- Bertasius, P.; Meisak, D.; Macutkevic, J.; Kuzhir, P.; Selskis, A.; Volnyanko, E.; Banys, J. Fine tuning of electrical transport and dielectric properties of epoxy/carbon nanotubes composites via magnesium oxide additives. Polymers 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Plyushch, A.; Bychanok, D.; Kuzhir, P.; Maksimenko, S.; Lapko, K.; Sokol, A.; Macutkevic, J.; Banys, J.; Micciulla, F.; Cataldo, A.; et al. Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application. Phys. Status Solidi (A) 2014, 211, 2580–2585. [Google Scholar] [CrossRef]
- Bouchet, J.; Carrot, C.; Guillet, J.; Boiteux, G.; Seytre, G.; Pineri, M. Conductive composites of UHMWPE and ceramics based on the segregated network concept. Polym. Eng. Sci. 2000, 40, 36–45. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Feng, J.; Wu, P. Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 2011, 5, 5920–5927. [Google Scholar] [CrossRef] [PubMed]
- Graziano, A.; Jaffer, S.; Sain, M. Review on modification strategies of polyethylene/polypropylene immiscible thermoplastic polymer blends for enhancing their mechanical behavior. J. Elastomer Plast. 2018, 51, 91–336. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, X.; Hao, X.; Schubert, D.W. Conductivity and phase morphology of carbon black-filled immiscible polymer blends under creep: An experimental and theoretical study. Phys. Chem. Chem. Phys. 2016, 18, 32125–32131. [Google Scholar] [CrossRef] [Green Version]
- Grunlan, J.C.; Gerberich, W.W.; Francis, L.F. Lowering the percolation threshold of conductive composites using particulate polymer microstructure. J. Appl. Polym. Sci. 2001, 80, 692–705. [Google Scholar] [CrossRef]
- Shahzad, F.; Lee, S.H.; Hong, S.M.; Koo, C.M. Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield. Res. Chem. Intermed. 2018, 44, 4707–4719. [Google Scholar] [CrossRef]
- Sun, K.; Xie, P.; Wang, Z.; Su, T.; Shao, Q.; Ryu, J.; Zhang, X.; Guo, J.; Shankar, A.; Li, J.; et al. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 2017, 125, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Wang, Z.; Sun, K.; Cheng, C.; Liu, Y.; Fan, R. Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl. Phys. Lett. 2017, 111, 112903. [Google Scholar]
- Xie, P.; Sun, K.; Wang, Z.; Liu, Y.; Fan, R.; Zhang, Z.; Schumacher, G. Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloys Compd. 2017, 725, 1259–1263. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Fan, R.; Ren, Y.; Ding, T.; Qian, L.; Guo, J.; Li, X.; An, L.; Lei, Y.; Yin, Y.; et al. Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 2017, 9, 5779–5787. [Google Scholar] [CrossRef]
- Zhang, K.; Li, G.; Feng, L.; Wang, N.; Guo, J.; Sun, K.; Yu, K.; Zeng, J.; Li, T.; Guo, Z.; et al. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotubes nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C 2017, 5, 9359–9369. [Google Scholar] [CrossRef]
- Li, B.; Sui, G.; Zhong, W.H. Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 2009, 21, 4176–4180. [Google Scholar] [CrossRef]
- Tsutaoka, T.; Kasagi, T.; Yamamoto, S.; Hatakeyama, K. Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl. Phys. Lett. 2013, 102, 181904. [Google Scholar] [CrossRef]
- Cui, C.-H.; Yan, D.-X.; Pang, H.; Xu, X.; Jia, L.-C.; Li, Z.-M. Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 2016, 4, 4137–4145. [Google Scholar] [CrossRef]
- Yan, D.-X.; Pang, H.; Xu, L.; Bao, Y.; Ren, P.-G.; Lei, J.; Li, Z.-M. Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology 2014, 25, 145705. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.C.; Xu, J.Z.; Wang, Z.G.; Huang, Y.F.; Yin, H.M.; Xu, L.; Chen, Y.W.; Yan, D.X.; Li, Z.M. Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2018, 110, 237–245. [Google Scholar] [CrossRef]
- Sharif, F.; Arjmand, M.; Moud, A.A.; Sundararaj, U.; Roberts, E.P. Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nano-composites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 14171–14179. [Google Scholar] [CrossRef]
- Vovchenko, L.; Matzui, L.; Oliynyk, V.; Launets, V.; Mamunya, Y.; Maruzhenko, O. Nanocarbon/polyethylene composites with segregated conductive network for electromagnetic interference shielding. Mol. Cryst. Liq. Cryst. 2018, 672, 186–198. [Google Scholar] [CrossRef]
- Mamunya, Y.; Matzui, l.; Vovchenko, L.; Maruzhenko, O.; Oliynyk, V.; Pusz, S.; Kumanek, B.; Szeluga, U. Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos. Sci. Technol. 2019, 170, 51–59. [Google Scholar] [CrossRef]
- Mamunya, Y. Carbon Nanotubes—Polymer Nanocomposites; Yellampalli, S., Ed.; BoD–Books on Demand: Norderstedt, Germany, 2011; Chapter 9; Volume 173. [Google Scholar]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 1992. [Google Scholar]
- Perets, Y.; Aleksandrovych, L.; Melnychenko, M.; Lazarenko, O.; Vovchenko, L.; Matzui, L. The electrical properties of hybrid composites based on multiwall carbon nanotubes with graphite nanoplatelets. Nanoscale Res. Lett. 2017, 12, 406. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.C.; Yan, D.X.; Cui, C.H.; Jiang, X.; Ji, X.; Li, Z.M. Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J. Mater. Chem. C 2015, 3, 9369–9378. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth. Met. 2015, 205, 78–84. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Zhang, Z.; Sun, K.; Cheng, C.; Dang, F. Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency. Mater. Des. 2016, 97, 454–458. [Google Scholar] [CrossRef]
- Cheng, C.; Yan, K.; Fan, R.; Qian, L.; Zhang, Z.; Sun, K.; Chen, M. Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 2016, 96, 678–684. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, X.; He, Q.; Wei, H.; Long, J.; Guo, J.; Gu, H.; Yu, J.; Liu, J.; Ding, D.; et al. Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl. Mater. Interfaces 2015, 7, 6125–6138. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Huang, X.; Wu, X.; Xie, L.; Yang, K.; Jiang, P. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 2013, 5, 3847–3855. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, W.; Hou, Y.; Yu, Y.; Cao, W.; Zhang, T.; Fei, W. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 2015, 3, 1250–1260. [Google Scholar] [CrossRef]
- Nan, C.W.; Shen, Y.; Ma, J. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. [Google Scholar] [CrossRef]
- Cheng, C.; Fan, R.; Wang, Z.; Shao, Q.; Guo, X.; Xie, P.; Yin, Y.; Zhang, Y.; An, L.; Lei, Y.; et al. Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 2017, 125, 103–112. [Google Scholar] [CrossRef]
- Kranauskaitė, I.; Banys, J.; Talik, E.; Kuznetsov, V.; Nunn, N.; Shenderova, O. Electric/dielectric properties of composites filled with onion-like carbon and multiwalled carbon nanotubes. Lith. J. Phys. 2015, 55, 126–131. [Google Scholar] [CrossRef]
- Yakovenko, O.S.; Matzui, L.Y.; Vovchenko, L.L.; Lazarenko, O.A.; Perets, Y.S.; Lozitsky, O.V. Complex permittivity of polymer-based composites with carbon nanotubes in microwave band. Appl. Nanosci. 2019. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.-L. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2–20 GHz. Open J. Compos. Mater. 2013, 3, 29716. [Google Scholar] [CrossRef] [Green Version]
- Vovchenko, L.; Matzui, L.; Oliynyk, V.; Launetz, V.; Zagorodnii, V.; Lazarenko, O. Electrical and shielding properties of nanocarbon-epoxy composites. In Conductive Materials and Composites; Mitchell, V., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2016; Chapter 2; pp. 29–90. [Google Scholar]
CNT, % | 0.05 | 0.1 | 0.3 | 0.5 | 1.0 | 1.5 | 3 | 4.5 |
---|---|---|---|---|---|---|---|---|
, 50 GHz | 0.097 | 0.139 | 0.289 | 0.339 | 0.594 | 0.812 | 0.980 | 0.977 |
R/A, 50 GHz | 2.727 | 1.909 | 1.090 | 1.040 | 0.591 | 0.554 | 0.980 | 0.945 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vovchenko, L.; Matzui, L.; Oliynyk, V.; Milovanov, Y.; Mamunya, Y.; Volynets, N.; Plyushch, A.; Kuzhir, P. Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency. Materials 2020, 13, 1118. https://doi.org/10.3390/ma13051118
Vovchenko L, Matzui L, Oliynyk V, Milovanov Y, Mamunya Y, Volynets N, Plyushch A, Kuzhir P. Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency. Materials. 2020; 13(5):1118. https://doi.org/10.3390/ma13051118
Chicago/Turabian StyleVovchenko, Ludmila, Ludmila Matzui, Viktor Oliynyk, Yurii Milovanov, Yevgen Mamunya, Nadezhda Volynets, Artyom Plyushch, and Polina Kuzhir. 2020. "Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency" Materials 13, no. 5: 1118. https://doi.org/10.3390/ma13051118
APA StyleVovchenko, L., Matzui, L., Oliynyk, V., Milovanov, Y., Mamunya, Y., Volynets, N., Plyushch, A., & Kuzhir, P. (2020). Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency. Materials, 13(5), 1118. https://doi.org/10.3390/ma13051118