Homogenization of Radial Temperature by a Tungsten Sink in Sublimation Growth of 45 mm AlN Single Crystal
Abstract
:1. Introduction
2. Simulation
2.1. Geometric Model
2.2. Mathematical Model
3. Results and Discussion
3.1. Temperature Distribution
3.2. Temperature Gradients in Radial and Axial Directions
3.3. Thermal Stress in the Seed
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rojo, J.C.; Schowalter, L.J.; Gaska, R. Growth and characterization of epitaxial layers on aluminum nitride substrates prepared from bulk, single crystals. J. Cryst. Growth 2002, 240, 508–512. [Google Scholar] [CrossRef]
- Kato, T.; Nagai, I.; Miura, T.; Kamata, H.; Naoe, K.; Sanada, K.; Okumura, H. AlN bulk crystal growth by sublimation method. Phys. Status Solidi C 2010, 7, 1775–1777. [Google Scholar] [CrossRef]
- Zhuang, D.; Herro, Z.G.; Schlesser, R.; Sitar, Z. Seeded growth of AlN single crystals by physical vapor transport. J. Cryst. Growth 2006, 287, 372–375. [Google Scholar] [CrossRef]
- Wu, B.; Ma, R.; Zhang, H.; Prasad, V. Modeling and simulation of AlN bulk sublimation growth systems. J. Cryst. Growth 2004, 266, 303–312. [Google Scholar] [CrossRef]
- Klein, O.; Philip, P. Transient temperature phenomena during sublimation growth of silicon carbide single crystals. J. Cryst. Growth 2003, 249, 514–522. [Google Scholar] [CrossRef]
- Liu, L.; Edgar, J.H. A Global Growth Rate Model for Aluminum Nitride Sublimation. J. Electrochem. Soc. 2002, 149, G12–G15. [Google Scholar] [CrossRef]
- Liu, L.; Edgar, J.H. Transport effects in the sublimation growth of aluminum nitride. J. Cryst. Growth 2000, 220, 243–253. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, H. Transport phenomena in an aluminum nitride induction heating sublimation growth system. Int. J. Heat Mass Transf. 2004, 47, 2989–3001. [Google Scholar] [CrossRef]
- Gao, B.; Nakano, S.; Kakimoto, K. The impact of pressure and temperature on growth rate and layer uniformity in the sublimation growth of AlN crystals. J. Cryst. Growth 2012, 338, 69–74. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Huang, J.; Fu, D.; Het, G.; Wu, L. Optimization of total resolved shear stress in AlN single crystals homoepitaxially grown by physical vapor transport method. J. Cryst. Growth 2019, 519, 14–19. [Google Scholar] [CrossRef]
- Wolfson, A.A. Dependence of the growth rate of an AlN layer on nitrogen pressure in a reactor for sublimation growth of AlN crystals. Semiconductors 2010, 44, 1383–1385. [Google Scholar] [CrossRef]
- Segal, A.S.; Karpov, S.Y.; Makarov, Y.N.; Mokhov, E.; Roenkov, A.; Ramm, M.; Vodakov, Y. On Mechanisms of Sublimation Growth of AlN Bulk Crystals. J. Cryst. Growth 2000, 211, 68–72. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Cao, K.; Wang, J.; Wu, L. Hotzone design and optimization for 2-in. AlN PVT growth process through global heat transfer modeling and simulations. J. Cryst. Growth 2017, 474, 76–80. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Wang, Y.; Shao, Y.; Chen, C.; Liu, G.; Wu, Y.; Hao, X. Effect of Temperature Gradient on AlN Crystal Growth by Physical Vapor Transport Method. Cryst. Growth Des. 2019, 19, 6736–6742. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Shi, Y.; Edgar, J.H. Growth mode and defects in aluminum nitride sublimed on (0001) 6H-SiC substrates. MRS Internet J. Nitride Semicond. Res. 2001, 6, e7. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.; Edgar, J.H.; Liu, B.; Huey, H.; Jiang, H.X.; Lin, J.; Kuball, M.; Mogal, F.; Chaudhuri, J.; Rek, Z. Bulk AlN crystal growth by direct heating of the source using microwaves. J. Cryst. Growth 2004, 262, 168–174. [Google Scholar] [CrossRef]
- Hartmann, C.; Wollweber, J.; Dittmar, A.; Irmscher, K.; Kwasniewski, A.; Langhans, F.; Neugut, T.; Bickermann, M. Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn. J. Appl. Phys. 2013, 52, 8. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, H.; Cheng, H.; Jin, L.; Shi, Y. Preparation and characterization of AlN seeds for homogeneous growth. J. Semicond. 2019, 40, 102801. [Google Scholar] [CrossRef]
- Hu, W.; Guo, L.; Guo, Y.; Wang, W. Growing AlN crystals on SiC seeds: Effects of growth temperature and seed orientation. J. Cryst. Growth 2020, 541, 125654. [Google Scholar] [CrossRef]
- Dupret, F.; Nicodeme, P.; Ryckmans, Y.; Wouters, P.; Crochet, M. Global modelling of heat transfer in crystal growth furnaces. Int. J. Heat Mass Transf. 1990, 33, 1849–1871. [Google Scholar] [CrossRef]
- Chen, Q.S.; Zhang, H.; Prasad, V.; Balkas, C.M.; Yushin, N.K. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals. J. Heat Transf. 2001, 123, 1098–1109. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Feng, Y.; Wei, H.; Yang, S. Numerical study of radial temperature distribution in the AlN sublimation growth system. Cryst. Res. Technol. 2013, 48, 321–327. [Google Scholar] [CrossRef]
- Cai, D.; Zheng, L.; Zhang, H.; Zhuang, D.; Herro, Z.; Schlesser, R.; Sitar, Z. Effect of thermal environment evolution on AlN bulk sublimation crystal growth. J. Cryst. Growth 2007, 306, 39–46. [Google Scholar] [CrossRef]
- Wu, B.; Ma, R.; Zhang, H.; Dudley, M.; Schlesser, R.; Sitar, Z. Growth kinetics and thermal stress in AlN bulk crystal growth. J. Cryst. Growth 2003, 253, 326–339. [Google Scholar] [CrossRef]
- Jordan, A.S.; Caruso, R.; VonNeida, A.R. A comparative study of thermal stress induced dislocation generation in pulled GaAs, InP, and Si crystals. J. Appl. Phys. 1981, 52, 3331–3336. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, H.; Ha, S.; Skowronski, M. Integrated process modeling and experimental validation of silicon carbide sublimation growth. J. Cryst. Growth 2003, 252, 523–537. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, H.; Prasad, V.; Dudley, M. Growth kinetics and thermal stress in the sublimation growth of silicon carbide. Cryst. Growth Des. 2002, 2, 213–220. [Google Scholar] [CrossRef]
- Meyer, C.; Philip, P. Optimizing the temperature profile during sublimation growth of SiC single crystals: Control of heating power, frequency, and coil position. Cryst. Growth Des. 2005, 5, 1145–1156. [Google Scholar] [CrossRef]
- Meduoye, G.O.; Bacon, D.J.; Evans, K.E. Computer modelling of temperature and stress distributions in LEC-grown GaAs crystals. J. Cryst. Growth 1991, 108, 627–636. [Google Scholar] [CrossRef]
- Gao, B.; Kakimoto, K. Three-dimensional modeling of basal plane dislocations in 4H-SiC single crystals grown by the physical vapor transport method. Cryst. Growth Des. 2014, 14, 1272–1278. [Google Scholar] [CrossRef]
Thermal Conductivity (W/m·K) | Density (kg/m3) | Heat Capacity (J/kg·K) | |
---|---|---|---|
Tungsten crucible | 180 | 19,300 | 135 |
Insulation | 0.5 | 170 | 2100 |
AlN powder | 22.55 | 270.34 | 1172.7 |
AlN seed | 320 | 3250 | 1197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Liu, B.; Tang, X.; Liu, S.; Gao, B. Homogenization of Radial Temperature by a Tungsten Sink in Sublimation Growth of 45 mm AlN Single Crystal. Materials 2020, 13, 5553. https://doi.org/10.3390/ma13235553
Yu Y, Liu B, Tang X, Liu S, Gao B. Homogenization of Radial Temperature by a Tungsten Sink in Sublimation Growth of 45 mm AlN Single Crystal. Materials. 2020; 13(23):5553. https://doi.org/10.3390/ma13235553
Chicago/Turabian StyleYu, Yue, Botao Liu, Xia Tang, Sheng Liu, and Bing Gao. 2020. "Homogenization of Radial Temperature by a Tungsten Sink in Sublimation Growth of 45 mm AlN Single Crystal" Materials 13, no. 23: 5553. https://doi.org/10.3390/ma13235553