Experimental and Theoretical Insights into the Synergistic Effect of Iodide Ions and 1-Acetyl-3-Thiosemicarbazide on the Corrosion Protection of C1018 Carbon Steel in 1 M HCl
Abstract
:1. Introduction
2. Experimental Section
2.1. Material and Sample Preparation
2.2. Electrochemical Measurements
2.3. ACD/LABS Predictions of Solubility and Protonation of AST
2.4. Density Functional Theory (DFT) Calculations
2.5. Monte Carlo Simulations
3. Results and Discussion
3.1. Solubility and Protonation Analysis of AST
3.2. Linear Polarization Resistance (LPR) Measurements
3.3. Potentiodynamic Polarization (PDP) Measurements
3.4. Electrochemical Frequency Modulation (EFM) Measurements
3.5. Electrochemical Impedance Spectroscopy (EIS) Measurements
3.6. Comparison of the Inhibition Efficiency Obtained by Different Electrochemistry
3.7. Density Functional Theory (DFT) Calculations
3.8. Monte Carlo Simulations
4. Conclusions
- 1-Acetyl-3-thiosemicarbazide (AST) showed the promising corrosion protection of C1018 carbon steel in 1 M HCl. The protection was enhanced in the presence of KI.
- Inhibition efficiency increases with an increase in the concentration of AST. The highest inhibition efficiency of 81.69% was obtained with 250 ppm AST + 5 mM KI. All the electrochemical results were in good agreement.
- PDP results showed that the presence of AST alone and with AST + KI could simultaneously affect both the cathodic and anodic electrochemical corrosion reaction i.e., mixed-typed corrosion inhibitor.
- DFT calculations and a Monte Carlo simulation reveal that sulfur, nitrogen and oxygen atoms present in AST were the reactivity sites. The AST molecule had a strong interaction with the Fe surface. The interaction was further enhanced in the presence of iodide.
- The electrochemical studies were in good agreement with the results obtained from DFT calculations and Monte Carlo simulations.
Funding
Conflicts of Interest
References
- Obot, I.; Ankah, N.; Sorour, A.; Gasem, Z.; Haruna, K. 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustain. Mater. Technol. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, S.; Zhang, S.; He, Q.; Li, W. Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros. Sci. 2014, 87, 366–375. [Google Scholar] [CrossRef]
- Barmatov, E.; Hughes, T.; Nagl, M. Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions. Corros. Sci. 2015, 92, 85–94. [Google Scholar] [CrossRef]
- Obot, I.; Madhankumar, A.; Umoren, S.; Gasem, Z. Surface protection of mild steel using benzimidazole derivatives: Experimental and theoretical approach. J. Adhes. Sci. Technol. 2015, 29, 2130–2152. [Google Scholar] [CrossRef]
- Kabanda, M.M.; Murulana, L.C.; Ozcan, M.; Karadag, F.; Dehri, I.; Obot, I.B.; Ebenso, E.E. Quantum chemical studies on the corrosion inhibition of mild steel by some triazoles and benzimidazole derivatives in acidic medium. Int. J. Electrochem. Sci. 2012, 7, 5035–5056. [Google Scholar]
- Kovačević, N.; Kokalj, A. Analysis of molecular electronic structure of imidazole- and benzimidazole-based inhibitors: A simple recipe for qualitative estimation of chemical hardness. Corros. Sci. 2011, 53, 909–921. [Google Scholar] [CrossRef]
- Ćurković, H.O.; Stupnišek-Lisac, E.; Takenouti, H. The influence of pH value on the efficiency of imidazole based corrosion inhibitors of copper. Corros. Sci. 2010, 52, 398–405. [Google Scholar] [CrossRef]
- Larabi, L.; Benali, O.; Mekelleche, S.M.; Harek, Y. 2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid. Appl. Surf. Sci. 2006, 253, 1371–1378. [Google Scholar] [CrossRef]
- Khaled, K.; Al-Qahtani, M. The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: Chemical, electrochemical and theoretical studies. Mater. Chem. Phys. 2009, 113, 150–158. [Google Scholar] [CrossRef]
- Sherif, E.-S.M. Corrosion inhibition in 2.0M sulfuric acid solutions of high strength maraging steel by aminophenyl tetrazole as a corrosion inhibitor. Appl. Surf. Sci. 2014, 292, 190–196. [Google Scholar] [CrossRef]
- Awad, M.K.; Mustafa, M.R.; Elnga, M.M.A. Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface. J. Mol. Struct. Theochem 2010, 959, 66–74. [Google Scholar] [CrossRef]
- Tang, Y.-M.; Chen, Y.; Yang, W.; Liu, Y.; Yin, X.-S.; Wang, J.-T. Electrochemical and theoretical studies of thienyl-substituted amino triazoles on corrosion inhibition of copper in 0.5 M H2SO4. J. Appl. Electrochem. 2008, 38, 1553–1559. [Google Scholar] [CrossRef]
- Negm, A.; Elkholy, Y.; Zahran, M.; Tawfik, S. Corrosion inhibition efficiency and surface activity of benzothiazol-3-ium cationic Schiff base derivatives in hydrochloric acid. Corros. Sci. 2010, 52, 3523–3536. [Google Scholar] [CrossRef]
- Patel, N.S.; Beranek, P.; Nebyla, M.; Pribyl, M.; Snita, D. Inhibitive effects by some benzothiazole derivatives on mild steel corrosion in 1 N HCl. Int. J. Electrochem. Sci. 2014, 9, 3951–3960. [Google Scholar]
- Quraishi, M.; Ansari, F.; Jamal, D. Thiourea derivatives as corrosion inhibitors for mild steel in formic acid. Mater. Chem. Phys. 2003, 77, 687–690. [Google Scholar] [CrossRef]
- Fekry, A.; Mohamed, R.R. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochimica Acta 2010, 55, 1933–1939. [Google Scholar] [CrossRef]
- Ebenso, E.E.; Isabirye, D.A.; Eddy, N.O. Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium. Int. J. Mol. Sci. 2010, 11, 2473–2498. [Google Scholar] [CrossRef]
- Mohan, P.; Kalaignan, G.P. 1, 4-Bis (2-nitrobenzylidene) thiosemicarbazide as Effective Corrosion Inhibitor for Mild Steel. J. Mater. Sci. Technol. 2013, 29, 1096–1100. [Google Scholar] [CrossRef]
- Wazzan, N.A. DFT calculations of thiosemicarbazide, arylisothiocynates, and 1-aryl-2,5-dithiohydrazodicarbonamides as corrosion inhibitors of copper in an aqueous chloride solution. J. Ind. Eng. Chem. 2015, 26, 291–308. [Google Scholar] [CrossRef]
- Kumar, P.; Shetty, A.N. Inhibition effect of adsorption layer of 1-phenyl-4-(4-nitrophenyl) thiosemicarbazide on the corrosion of 18 Ni 250-grade welded maraging steel in 1.0 M hydrochloric acid medium. Res. Chem. Intermed. 2014, 41, 7095–7113. [Google Scholar] [CrossRef]
- Shahabi, S.; Norouzi, P.; Ganjali, M.R. Electrochemical and theoretical study of the inhibition effect of two synthesized thiosemicarbazide derivatives on carbon steel corrosion in hydrochloric acid solution. RSC Adv. 2015, 5, 20838–20847. [Google Scholar] [CrossRef]
- Quraishi, M.; Ansari, K.; Sorour, A.; Quraishi, M.; Lgaz, H.; Salghi, R. Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. Int. J. Biol. Macromol. 2018, 107, 1747–1757. [Google Scholar] [CrossRef]
- Badr, G. The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media. Corros. Sci. 2009, 51, 2529–2536. [Google Scholar] [CrossRef]
- Musa, A.Y.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S. Molecular dynamics and quantum chemical calculation studies on 4,4-dimethyl-3-thiosemicarbazide as corrosion inhibitor in 2.5M H2SO4. Mater. Chem. Phys. 2011, 129, 660–665. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review. J. Environ. Chem. Eng. 2017, 5, 246–273. [Google Scholar] [CrossRef]
- Hao, Y.; Sani, L.A.; Ge, T.; Fang, Q. The synergistic inhibition behaviour of tannic acid and iodide ions on mild steel in H 2 SO 4 solutions. Corros. Sci. 2017, 123, 158–169. [Google Scholar] [CrossRef]
- Umoren, S.; Li, Y.; Wang, F. Synergistic effect of iodide ion and polyacrylic acid on corrosion inhibition of iron in H2SO4 investigated by electrochemical techniques. Corros. Sci. 2010, 52, 2422–2429. [Google Scholar] [CrossRef]
- Pavithra, M.; Venkatesha, T.V.; Kanagalasara, V.; Nayana, K. Synergistic effect of halide ions on improving corrosion inhibition behaviour of benzisothiozole-3-piperizine hydrochloride on mild steel in 0.5M H2SO4 medium. Corros. Sci. 2010, 52, 3811–3819. [Google Scholar] [CrossRef]
- Akkermans, R.L.; Spenley, N.A.; Robertson, S.H. Monte Carlo methods in Materials Studio. Mol. Simul. 2013, 39, 1153–1164. [Google Scholar] [CrossRef]
- Verma, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Quraishi, M.A.; Obot, I.B. Adsorption Behavior of Glucosamine-Based, Pyrimidine-Fused Heterocycles as Green Corrosion Inhibitors for Mild Steel: Experimental and Theoretical Studies. J. Phys. Chem. C 2016, 120, 11598–11611. [Google Scholar] [CrossRef]
- Lai, C.; Xie, B.; Zou, L.; Zheng, X.; Ma, X.; Zhu, S. Adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by S-allyl-O,O′-dialkyldithiophosphates. Results Phys. 2017, 7, 3434–3443. [Google Scholar] [CrossRef]
- Solmaz, R.; Kardaş, G.; Çulha, M.; Yazıcı, B.; Erbil, M. Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta 2008, 53, 5941–5952. [Google Scholar] [CrossRef]
- Stern, M. Closure to “Discussion of ‘Electrochemical Polarization, 1. A Theoretical Analysis of the Shape of Polarization Curves’ [M. Stern and A. L. Geary (pp. 56–63, Vol. 104)]”. J. Electrochem. Soc. 1957, 104, 751–752. [Google Scholar] [CrossRef]
- Umoren, S.; Li, Y.; Wang, F. Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions. Corros. Sci. 2010, 52, 1777–1786. [Google Scholar] [CrossRef]
- Larabi, L.; Harek, Y.; Traisnel, M.; Mansri, A. Synergistic Influence of Poly(4-Vinylpyridine) and Potassium Iodide on Inhibition of Corrosion of Mild Steel in 1M HCl. J. Appl. Electrochem. 2004, 34, 833–839. [Google Scholar] [CrossRef]
- Obot, I.; Onyeachu, I.B. Electrochemical frequency modulation (EFM) technique: Theory and recent practical applications in corrosion research. J. Mol. Liq. 2018, 249, 83–96. [Google Scholar] [CrossRef]
- Abbasov, V.; El-Lateef, H.M.A.; Aliyeva, L.; Qasimov, E.; Ismayilov, I.; Khalaf, M.M. A study of the corrosion inhibition of mild steel C1018 in CO2-saturated brine using some novel surfactants based on corn oil. Egypt. J. Pet. 2013, 22, 451–470. [Google Scholar] [CrossRef] [Green Version]
- Obot, I.; Onyeachu, I.; Wazzan, N.; Al-Amri, A.H. Theoretical and experimental investigation of two alkyl carboxylates as corrosion inhibitors for steel in acidic medium. J. Mol. Liq. 2019, 279, 190–207. [Google Scholar] [CrossRef]
- Zhang, Q.; Hua, Y. Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochimica Acta 2009, 54, 1881–1887. [Google Scholar] [CrossRef]
- Khaled, K.; Amin, M.A. Dry and wet lab studies for some benzotriazole derivatives as possible corrosion inhibitors for copper in 1.0M HNO3. Corros. Sci. 2009, 51, 2098–2106. [Google Scholar] [CrossRef]
- Obot, I.B.; Obi-Egbedi, N.O.; Ebenso, E.E.; Afolabi, A.S.; E Oguzie, E. Experimental, quantum chemical calculations, and molecular dynamic simulations insight into the corrosion inhibition properties of 2-(6-methylpyridin-2-yl)oxazolo[5,4-f][1,10]phenanthroline on mild steel. Res. Chem. Intermed. 2012, 39, 1927–1948. [Google Scholar] [CrossRef]
- Khaled, K.; El-Maghraby, A. Experimental, Monte Carlo and molecular dynamics simulations to investigate corrosion inhibition of mild steel in hydrochloric acid solutions. Arab. J. Chem. 2014, 7, 319–326. [Google Scholar] [CrossRef]
- Sasikumar, Y.; Adekunle, A.; Olasunkanmi, L.; Bahadur, I.; Baskar, R.; Kabanda, M.M.; Obot, I.; Ebenso, E. Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 2015, 211, 105–118. [Google Scholar] [CrossRef]
- Sikine, M.; Elmsellem, H.; Rodi, Y.K.; Kadmi, Y.; Belghiti, M.; Steli, H.; Ouzidan, Y.; Sebbar, N.K.; Essassi, E.M.; Hammouti, B. Experimental, Monte Carlo simulation and quantum chemical analysis of 1, 5-di (prop-2-ynyl)-benzodiazepine-2, 4-dione as new corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. J. Mater. Environ. Sci. 2017, 8, 116–133. [Google Scholar]
- Singh, A.; Lin, Y.; Quraishi, M.A.; Olasunkanmi, L.O.; Fayemi, O.E.; Sasikumar, Y.; Ramaganthan, B.; Bahadur, I.; Obot, I.B.; Adekunle, A.S.; et al. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies. Molecules 2015, 20, 15122–15146. [Google Scholar] [CrossRef] [Green Version]
- Umoren, S.; Solomon, M. Effect of halide ions on the corrosion inhibition efficiency of different organic species—A review. J. Ind. Eng. Chem. 2015, 21, 81–100. [Google Scholar] [CrossRef]
Inhibitor Concentration | Ecorr mV | icorr (µA·cm−2) | Rp ohms | CR (mpy) | ηLPR (%) |
---|---|---|---|---|---|
1 M HCl | −514.2 | 1580 | 16.49 | 138.00 | - |
250 ppm AST | −505.7 | 506.3 | 51.46 | 44.24 | 67.94 |
500 ppm AST | −506.0 | 481.4 | 54.12 | 42.06 | 69.52 |
750 ppm AST | −503.9 | 438.1 | 59.47 | 38.27 | 72.27 |
250 ppm AST + 5 mM KI | −500.4 | 290.1 | 89.82 | 25.34 | 81.64 |
500 ppm AST + 5 mM KI | −498.6 | 322.5 | 80.78 | 28.18 | 79.58 |
750 ppm AST + 5 mM KI | −503.6 | 352.5 | 73.92 | 30.79 | 77.69 |
Inhibitor Concentration | Ecorr (mV/SCE) | icorr (mAcm−2) | βa (mV dec−1) | −βc (mV dec−1) | CR (mpy) | ηPDP (%) |
---|---|---|---|---|---|---|
1 M HCl | −494.0 | 561.0 | 79.30 | 98.90 | 49.01 | - |
250 ppm AST | −496.0 | 213.0 | 61.50 | 98.70 | 18.64 | 62.00 |
500 ppm AST | −495.0 | 187.0 | 56.90 | 100.40 | 16.37 | 66.60 |
750 ppm AST | −492.0 | 186.0 | 55.00 | 107.40 | 16.27 | 66.80 |
250 ppm AST + 5 mM KI | −484.0 | 116.0 | 61.40 | 99.20 | 10.16 | 79.30 |
500 ppm AST+ 5 mM KI | −488.0 | 136.0 | 61.30 | 99.70 | 11.87 | 75.80 |
750 ppm AST+ 5 mM KI | −490.0 | 170.0 | 63.00 | 103.3 | 14.65 | 70.10 |
Inhibitor Concentration | icorr (µAcm−2) | βa (mV dec−1) | βc (mV dec−1) | CR (mpy) | ηEFM (%) | CF(2) | CF(3) |
---|---|---|---|---|---|---|---|
1 M HCl | 701.30 | 67.45 | 75.63 | 61.27 | - | 2.06 | 2.96 |
250 ppm AST | 378.40 | 83.70 | 95.49 | 33.06 | 46.04 | 2.03 | 2.97 |
500 ppm AST | 369.60 | 85.65 | 95.53 | 32.29 | 47.30 | 2.00 | 3.19 |
750 ppm AST | 350.40 | 88.50 | 94.85 | 30.61 | 50.04 | 2.07 | 2.98 |
250 ppm AST + 5 mM KI | 254.70 | 87.22 | 99.58 | 22.25 | 63.69 | 1.91 | 2.97 |
500 ppm AST+ 5 mM KI | 276.70 | 88.81 | 97.67 | 24.17 | 60.55 | 1.70 | 2.92 |
750 ppm AST + 5 mM KI | 291.00 | 87.99 | 101.00 | 25.42 | 58.51 | 1.94 | 3.08 |
Inhibitor Concentration | (Ω·cm2) | CPE | (Ω·cm2) | (μF·cm2) | χ2 × 10−4 | ηEIS (%) | |
---|---|---|---|---|---|---|---|
Y0 (×10−6 S·sn·cm−2) | m | ||||||
1 M HCl | 1.48 | 161.3 | 0.92 | 96.77 | 224.47 | 2.82 | - |
250 ppm AST | 1.34 | 120.1 | 0.91 | 292.3 | 162.38 | 3.07 | 66.89 |
500 ppm AST | 1.5 | 115.6 | 0.9 | 304.5 | 152.19 | 3.41 | 68.22 |
750 ppm AST | 1.45 | 105.2 | 0.99 | 326.8 | 108.15 | 3.44 | 70.39 |
250 ppm AST + 5 mM KI | 1.66 | 114.1 | 0.87 | 468.9 | 149.61 | 2.66 | 79.36 |
500 ppm AST+ 5 mM KI | 1.46 | 130.5 | 0.88 | 436.9 | 174.28 | 2.42 | 77.85 |
750 ppm AST+ 5 mM KI | 1.54 | 106.8 | 0.89 | 418.6 | 144.52 | 2.71 | 76.88 |
S/No | Corrosion Inhibitor | Metal | Acid Concentration | Electrochemical Techniques | Inhibition Efficiency | References |
---|---|---|---|---|---|---|
1 | 1-phenyl-4-(4-nitrophenyl)thiosemicarbazide | Maraging steel | 1 M HCl | EIS | 47.3% @ 0.2 mM | [20] |
2 | 1-ethyl-4(2,4-dinitrophenyl) thiosemicarbazide | C-Steel | 2 M HCl | EIS | 68.8% @ 16 µM | [23] |
3 | 1,4-diphenylthiosemicarbazide | C-Steel | 2 M HCl | EIS | 62.6% @ 16 µM | [23] |
4 | 1-ethyl-4-phenylthiosemicarbazide | C-Steel | 2 M HCl | EIS | 62.6 % @ 16 µM | [23] |
5 | 1-Acetyl-3-thiosemicarbazide | C1018 Steel | 1 M HCl | EIS | 70.39 @ 750 ppm | Present Study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, A.H. Experimental and Theoretical Insights into the Synergistic Effect of Iodide Ions and 1-Acetyl-3-Thiosemicarbazide on the Corrosion Protection of C1018 Carbon Steel in 1 M HCl. Materials 2020, 13, 5013. https://doi.org/10.3390/ma13215013
Alamri AH. Experimental and Theoretical Insights into the Synergistic Effect of Iodide Ions and 1-Acetyl-3-Thiosemicarbazide on the Corrosion Protection of C1018 Carbon Steel in 1 M HCl. Materials. 2020; 13(21):5013. https://doi.org/10.3390/ma13215013
Chicago/Turabian StyleAlamri, Aeshah Hassan. 2020. "Experimental and Theoretical Insights into the Synergistic Effect of Iodide Ions and 1-Acetyl-3-Thiosemicarbazide on the Corrosion Protection of C1018 Carbon Steel in 1 M HCl" Materials 13, no. 21: 5013. https://doi.org/10.3390/ma13215013
APA StyleAlamri, A. H. (2020). Experimental and Theoretical Insights into the Synergistic Effect of Iodide Ions and 1-Acetyl-3-Thiosemicarbazide on the Corrosion Protection of C1018 Carbon Steel in 1 M HCl. Materials, 13(21), 5013. https://doi.org/10.3390/ma13215013