Structural and Magneto-Optical Characterization of La, Nd: Y2O3 Powders Obtained via a Modified EDTA Sol–Gel Process and HIP-Treated Ceramics
Abstract
:1. Introduction
2. Experimental
Preparation of Powders
3. Results and Discussion
3.1. X-Ray Diffraction of Powders
3.2. SEM Observation of Powders
3.3. Bulk Ceramics Characterization
3.3.1. XRD Analysis
3.3.2. SEM Observation
3.3.3. Raman Spectroscopy Analysis
3.3.4. UV–Vis–IR Absorbance Spectroscopy
3.3.5. Optical Band Gap
3.3.6. Luminescence Spectra
3.3.7. Luminescence Lifetime
3.3.8. Verdet Constant Analysis
3.3.9. Verdet Constant in the Function of Temperature
3.3.10. Figure of Merit of the Verdet Constant
4. Conclusions
Funding
Conflicts of Interest
References
- Zhu, H.; Zhang, Y.; Yin, D.; Wang, J.; Duan, Y.; Zhang, J.; Liu, P.; Tang, D. Highly efficient CW operation of a diode pumped Nd:Y2O3 ceramic laser. Opt. Mater. Express 2018, 8, 3518–3525. [Google Scholar] [CrossRef]
- Secu, M.; Secu, C.; Bartha, C. Crystallization and luminescence properties of a new Eu 3+ -doped LaOCl nano-glass-ceramic. J. Eur. Ceram. Soc. 2016, 36, 203–207. [Google Scholar] [CrossRef]
- Yanagida, T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 2018, 94, 75–97. [Google Scholar] [CrossRef] [Green Version]
- Greskovich, C.; Duclos, S. Ceramic Scintillators. Annu. Rev. Mater. Res. 1997, 27, 69–88. [Google Scholar] [CrossRef]
- Chapman, M.G. Thermal post-fabrication processing of Y2O3:tm ceramic scintillators. Master’s Thesis, Clemson University, Clemson, SC, USA, 2005. [Google Scholar]
- Irankhah, R.; Rahimipour, M.R.; Zakeri, M.; Razavi, M.; Zakeri, M. Optical and mechanical properties of transparent YAG ceramic produced by reactive spark plasma sintering (RSPS). Mater. Res. Express 2018, 5, 095206. [Google Scholar] [CrossRef]
- Patra, A.; Sominska, E.; Ramesh, S.; Koltypin, Y.; Zhong, Z.; Minti, H.; Reisfeld, R.; Gedanken, A. Sonochemical Preparation and Characterization of Eu2O3and Tb2O3Doped in and Coated on Silica and Alumina Nanoparticles. J. Phys. Chem. B 1999, 103, 3361–3365. [Google Scholar] [CrossRef]
- Cherepy, N. Transparent ceramic scintillators for gamma-ray spectroscopy and radiography. SPIE Newsroom 2010, 78050. [Google Scholar] [CrossRef]
- Dutta, D.P.; Tyagi, A. Inorganic Phosphor Materials for Solid State White Light Generation. Solid State Phenom. 2009, 155, 113–143. [Google Scholar] [CrossRef]
- Hubbard, K.J.; Schlom, D.G. Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 1996, 11, 2757–2776. [Google Scholar] [CrossRef]
- Aghazadeh, M.; Ghaemi, M.; Golikand, A.N.; Yousefi, T.; Jangju, E. Yttrium Oxide Nanoparticles Prepared by Heat Treatment of Cathodically Grown Yttrium Hydroxide. Isrn Ceram. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Chen, X.; Mei, G. Hydrothermal synthesis and luminescent properties of Y2O3:Eu3+ from waste phosphors. Results Phys. 2018, 10, 675–679. [Google Scholar] [CrossRef]
- Srinivasan, R.; Yogamalar, N.R.; Elanchezhiyan, J.; Joseyphus, R.J.; Bose, A.C. Structural and optical properties of europium doped yttrium oxide nanoparticles for phosphor applications. J. Alloy Compd. 2010, 496, 472–477. [Google Scholar] [CrossRef]
- Chen, J.; Huang, J.; Huang, C.; Sun, X. Preparation of nanoscaled yttrium oxide by citrate precipitation method. J. Rare Earth 2017, 35, 79–84. [Google Scholar] [CrossRef]
- Kang, Y.C.; Bin Park, S.; Lenggoro, I.W.; Okuyama, K. Preparation of nonaggregated Y2O3: Eu phosphor particles by spray pyrolysis method. J. Mater. Res. 1999, 14, 2611–2615. [Google Scholar] [CrossRef] [Green Version]
- Djuricic, B.; Kolar, D.; Memic, M. Synthesis and properties of Y2O3 powder obtained by different methods. J. Eur. Ceram. Soc. 1992, 9, 75–82. [Google Scholar] [CrossRef]
- Gajović, A.; Tomasic, N.; Djerdj, I.; Su, D.; Furic, K. Influence of mechanochemical processing to luminescence properties in Y2O3 powder. J. Alloy Compd. 2008, 456, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Park, Y.-J.; Zhu, L.-L.; Go, S.-I.; Kim, H.; Kim, J.-M.; Ko, J.-W. Fabrication and properties of La2O3-doped transparent yttria ceramics by hot-pressing sintering. J. Alloy Compd. 2017, 695, 2142–2148. [Google Scholar] [CrossRef]
- Ikesue, A.; Kamata, K.; Yoshida, K. ChemInform Abstract: Synthesis of Transparent Nd-Doped HfO2-Y2O3 Ceramics Using HIP (hot isostatic pressing). Chemins 2010, 27, 359–364. [Google Scholar] [CrossRef]
- Majima, K.; Niimi, N.; Watanabe, M.; Katsuyama, S.; Nagai, H. Effect of LiF addition on the preparation of transparent Y2O3 by the vacuum hot pressing method. J. Alloy Compd. 1993, 193, 280–282. [Google Scholar] [CrossRef]
- Ahsanzadeh-Vadeqani, M.; Razavi, R.S. Spark plasma sintering of zirconia-doped yttria ceramic and evaluation of the microstructure and optical properties. Ceram. Int. 2016, 42, 18931–18936. [Google Scholar] [CrossRef]
- Kruk, A.; Jany, B.R.; Owczarczyk, K.; Madej, D. On the possibility of using arc plasma melting technique in preparation of transparent yttria ceramics. Opt. App. 2019, 49, 355–364. [Google Scholar] [CrossRef]
- Qiu, J.; Tanaka, K.; Hirao, K. Preparation and Faraday Effect of Fluoroaluminate Glasses Containing Divalent Europium Ions. J. Am. Ceram. Soc. 2005, 80, 2696–2698. [Google Scholar] [CrossRef]
- Snetkov, I.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Wavelength dependence of Verdet constant of Tb3+:Y2O3 ceramics. Appl. Phys. Lett. 2016, 108, 161905. [Google Scholar] [CrossRef]
- Serber, R. The Theory of the Faraday Effect in Molecules. Phys. Rev. 1932, 41, 489–506. [Google Scholar] [CrossRef]
- Hwang, Y.; Kim, H.; Cho, S.; Kim, T.; Um, Y.; Park, H.; Jeen, G. Magnetic and magneto-optical properties in diluted magnetic semiconductors: Cd1−x−yMnxFeyTe single crystals. J. Magn. Magn. Mater. 2006, 304, e309–e311. [Google Scholar] [CrossRef]
- Castera, J.; Hepner, G. Isolator in integrated optics using the Faraday and Cotton-mouton effects. IEEE Trans. Magn. 1977, 13, 1583–1585. [Google Scholar] [CrossRef]
- Deeter, M.N.; Rose, A.H.; Day, G.W. Faraday-Effect Magnetic Field Sensors Based on Substituted Iron Garnets; International Society for Optics and Photonics: Bellingham, WA, USA, 1991; pp. 243–249. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, G.; Liu, P.; Wang, S.; Guo, H. Preparation and performance of magneto-optical glasses doped with Tb3+/Dy3+. J. Wuhan Univ. Technol. Sci. Ed. 2014, 29, 684–687. [Google Scholar] [CrossRef]
- Kruk, A. Optical and structural properties of arc melted Ce or Pr –doped Y2O3 transparent ceramics. Ceram. Int. 2017, 43, 16909–16914. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, F.; Chen, J. Growth and characterization of Tb3Ga5−xAlxO12 single crystal. J. Cryst. Growth 2007, 306, 195–199. [Google Scholar] [CrossRef]
- Qiu, J.; Tanaka, K.; Sugimoto, N.; Hirao, K. Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses. J. Non-Cryst. Solids 1997, 213, 193–198. [Google Scholar] [CrossRef]
- Mei, M.; Cao, L.L.; He, Y.; Zhang, R.R.; Guo, F.Y.; Zhuang, N.F.; Chen, J.Z. Growth and Magneto-Optical Properties of CaTbAlO4 Crystal. Adv. Mater. Res. 2011, 306, 1722–1727. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.; Palashov, O. High-power Faraday isolator on a uniaxial CeF3 crystal. Opt. Lett. 2019, 44, 1297–1299. [Google Scholar] [CrossRef]
- Kruk, A.; Brylewski, T.; Mrózek, M. Optical and magneto-optical properties of Nd0.1La0.1Y1.8O3 transparent ceramics. J. Lumin 2019, 209, 333–339. [Google Scholar] [CrossRef]
- Scherrer, P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math.-Phys. Klasse 1918, 2, 98–100. [Google Scholar]
- Kruk, A.; Mrózek, M. The measurement of Faraday effect of translucent material in the entire visible spectrum. Measurements 2020, 162, 107912. [Google Scholar] [CrossRef]
- Kakihana, M. Invited review “sol-gel” preparation of high temperature superconducting oxides. J. Sol.-Gel Sci. Technol. 1996, 6, 7–55. [Google Scholar] [CrossRef]
- Sillén, L.G.; Martell, A.E. Stability Constants of Metallic-ion Complexes. Soil Sci. 1965, 100, 74. [Google Scholar] [CrossRef]
- Lei, R.; Wang, H.; Xu, S.; Tian, Y.; Yang, Q. Combustion synthesis and enhanced 1.5 μm emission in Y2O3:Er3+ powders codoped with La3+ ions. J. Rare Earths 2016, 34, 125–129. [Google Scholar] [CrossRef]
- Repelin, Y.; Proust, C.; Husson, E.; Beny, J. Vibrational Spectroscopy of the C-Form of Yttrium Sesquioxide. J. Solid State Chem. 1995, 118, 163–169. [Google Scholar] [CrossRef]
- Ubaldini, A.; Carnasciali, M.M. Raman characterisation of powder of cubic RE2O3 (RE=Nd, Gd, Dy, Tm, and Lu), Sc2O3 and Y2O3. J. Alloy. Compd. 2008, 454, 374–378. [Google Scholar] [CrossRef]
- Li, X.; Xie, L.; Zheng, X. The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 251–258. [Google Scholar] [CrossRef]
- Walsh, B.M.; McMahon, J.M.; Edwards, W.C.; Equall, R.W.; Hutcheson, R.L.; Barnes, N.P. Spectroscopic characterization of Nd:Y2O3: Application toward a differential absorption lidar system for remote sensing of ozone. J. Opt. Soc. Am. B 2002, 19, 2893. [Google Scholar] [CrossRef]
- O’Donnell, K.P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 2924–2926. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Zhou, S.; Jia, T.; Lin, H.; Teng, H. Effect of Nd concentration on structural and optical properties of Nd:Y2O3 transparent ceramic. J. Lumin. 2011, 131, 1953–1958. [Google Scholar] [CrossRef]
- Ivanov, I.A.; Karimov, D.; Snetkov, I.; Palashov, O.; Kochurikhin, V.; Masalov, A.; Fedorov, V.; Ksenofontov, D.; Kabalov, Y. Study of the influence of Tb-Sc-Al garnet crystal composition on Verdet constant. Opt. Mater. 2017, 66, 106–109. [Google Scholar] [CrossRef]
- Weller, L.; Kleinbach, K.S.; Zentile, M.A.; Knappe, S.; Hughes, I.G.; Adams, C.S. Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime. Opt. Lett. 2012, 37, 3405–3407. [Google Scholar] [CrossRef] [Green Version]
Sinter | Shape | Dimensions |
---|---|---|
Y2O3 | Cylinder: | 5 mm in Diameter, 0.8 mm Thickness |
La0.1Y1.9O3 | Cylinder: | 5 mm in Diameter, 0.68 mm Thickness |
La0.1Nd0.12Y1.78O3 | Cylinder: | 5 mm in Diameter, 0.59 mm Thickness |
Powder | dhkl (222) (Å) | a (Å) | V (Å3) | Dxrd (nm) | ρ (1014 m−2) | BET (m2/g) |
---|---|---|---|---|---|---|
Y2O3 | 3.05 | 10.5718 | 1181.5170 | 15 | 11.1 | 3.21 |
La0.1Y1.9O3 | 3.06 | 10.6238 | 1199.0565 | 11 | 44.4 | 3.24 |
La0.1Nd0.12Y1.78O3 | 3.07 | 10.6659 | 1213.3679 | 10 | 100 | 3.36 |
a (Ǻ) | V (Ǻ3) | DXRD (nm) | ρ 1014 (m−2) | |
---|---|---|---|---|
Y2O3 | 10.61 | 1194 | 95.06 | 11.01 |
La0.1Y1.9O3 | 10.63 | 1211 | 87.45 | 1.32 |
La0.1Nd0.12Y1.78O3 | 10.66 | 1211 | 69.30 | 2.10 |
Y (Wt.%) | La (Wt.%) | Nd (Wt.%) | O (Wt.%) | |
---|---|---|---|---|
Y2O3 | 76.1 | – | – | 19.1 |
La0.1Y1.9O3 | 72.1 | 4.4 | – | 18.4 |
La0.1Nd0.12Y1.78O3 | 70.6 | 4.9 | 6.2 | 18.3 |
La0.1Nd0.12Y1.78O3 point “1” | 71.5 | 4.3 | 6.1 | 18.1 |
La0.1Nd0.12Y1.78O3 point “2” | 37.6 | 30.2 | 8.6 | 23.7 |
B1 | B2 | B3 | C1 | C2 | C3 | |
---|---|---|---|---|---|---|
Y2O3 | 31.58 | 1.28 | 23.39 | 275.45 | 349.2 | 366.51 |
La0.1Y1.9O3 | 35.30 | 23.93 | 0 | 285.44 | 291.88 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruk, A. Structural and Magneto-Optical Characterization of La, Nd: Y2O3 Powders Obtained via a Modified EDTA Sol–Gel Process and HIP-Treated Ceramics. Materials 2020, 13, 4928. https://doi.org/10.3390/ma13214928
Kruk A. Structural and Magneto-Optical Characterization of La, Nd: Y2O3 Powders Obtained via a Modified EDTA Sol–Gel Process and HIP-Treated Ceramics. Materials. 2020; 13(21):4928. https://doi.org/10.3390/ma13214928
Chicago/Turabian StyleKruk, Andrzej. 2020. "Structural and Magneto-Optical Characterization of La, Nd: Y2O3 Powders Obtained via a Modified EDTA Sol–Gel Process and HIP-Treated Ceramics" Materials 13, no. 21: 4928. https://doi.org/10.3390/ma13214928
APA StyleKruk, A. (2020). Structural and Magneto-Optical Characterization of La, Nd: Y2O3 Powders Obtained via a Modified EDTA Sol–Gel Process and HIP-Treated Ceramics. Materials, 13(21), 4928. https://doi.org/10.3390/ma13214928