Effect of Noble Metal Addition on the Disorder Dynamics of Ni3Al by Means of Monte Carlo Simulation
Abstract
:1. Introduction
2. Methodology
2.1. Monte Carlo Simulation Algorithm
2.2. Monitored Parameters
2.2.1. Long-Range and Short-Range Order Parameters
2.2.2. Jump Windows
2.2.3. Jump Statistics
3. Results and Discussion
3.1. Evolution of the LRO Parameter
3.2. SRO Parameter Evolution
3.3. Jump Profiles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mekhrabov, A.O.; Akdeniz, M.V. Modelling and Monte Carlo simulation of the atomic ordering processes in Ni3Al intermetallics. Model. Simul. Mater. Sci. Eng. 2006, 15, 1. [Google Scholar] [CrossRef]
- Sondericker, D.; Jona, F.; Marcus, P.M. Atomic structure of a {001} surface of Ni3Al. Phys. Rev. B 1986, 33, 900. [Google Scholar] [CrossRef] [PubMed]
- Kozubski, R.; Kozłowski, M.; Pierron-Bohnes, V.; Pfeiler, W. “Order-order” relaxations in intermetallics: Dedicated to Prof. Dr. Helmut Mehrer on the occasion of his 65th birthday. Z. Met. 2004, 95, 880–887. [Google Scholar] [CrossRef]
- Yaldram, K.; Pierron-Bohnes, V.; Cadeville, M.C.; Khan, M.A. Monte Carlo simulations of long-range order kinetics in B2 phases. J. Mater. Res. 1995, 10, 591–595. [Google Scholar] [CrossRef]
- Stoeckinger, G.R.; Neumann, J.P. Determination of the order in the intermetallic phase Ni3Al as a function of temperature. J. Appl. Crystallogr. 1970, 3, 32–38. [Google Scholar] [CrossRef]
- Pfeiler, W.; Sprušil, B. Atomic ordering in alloys: Stable states and kinetics. Mater. Sci. Eng. A 2002, 324, 34–42. [Google Scholar] [CrossRef]
- Oramus, P.; Kozubski, R.; Cadeville, M.C.; Pierron-Bohnes, V.; Pfeiler, W. Computer simulation of order-order kinetics in L12 superstructure. Mater. Sci. Eng. A 1997, 239, 777–783. [Google Scholar] [CrossRef]
- Oramus, P.; Kozubski, R.; Cadeville, M.; Pierron-Bohnes, V.; Pfeiler, W. Kinetics of “order-order” relaxations in Ni{3}Al studied by computer simulation. Acta Phys. Pol. A 1999, 1, 153–160. [Google Scholar] [CrossRef]
- Oramus, P.; Abdank-Kozubski, R.; Pierron-Bohnes, V.; Cadeville, M.C.; Massobrio, C.; Pfeiler, W. Implementation of EAM-Potential Formalism with Monte-Carlo Simulation of ’Order-Order’ Relaxations in Ni3Al. In Defect and Diffusion Forum; Lomoge, Y., Bocquet, J.L., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2001; Volume 194–199, pp. 453–460. [Google Scholar] [CrossRef]
- Oramus, P.; Kozubski, R.; Pierron-Bohnes, V.; Cadeville, M.C.; Pfeiler, W. Monte Carlo computer simulation of order-order kinetics in the L12-ordered Ni3Al binary system. Phys. Rev. B 2001, 63, 174109. [Google Scholar] [CrossRef]
- Oramus, P.; Kozubski, R.; Pierron-Bohnes, V.; Cadeville, M.C.; Pfeiler, W. Multi-Modal “Order-Order” Kinetics in Ni3Al Studied by Monte Carlo Computer Simulation. MRS Proc. 2000, 646. [Google Scholar] [CrossRef]
- Oramus, P.; Kozubski, R.; Pierron-Bohnes, V.; Cadeville, M.C.; Massobrio, C.; Pfeiler, W. Computer simulation of long-range order relaxation in homogeneous systems. Mater. Sci. Eng. A 2002, 324, 11–15. [Google Scholar] [CrossRef]
- Ruban, A.V.; Skriver, H.L. Calculated site substitution in ternary γ|IH-Ni3Al: Temperature and composition effects. Phys. Rev. B 1997, 55, 856–874. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.E.; Shang, S.L.; Liu, Z.K. Effects of alloying elements on elastic properties of Ni3Al by first-principles calculations. Intermetallics 2010, 18, 1163–1171. [Google Scholar] [CrossRef]
- Belova, I.V.; Murch, G.E. Analysis of diffusion in Ni3Al and Ni3Ge. In Defect and Diffusion Forum; Mehrer, H., Herzig, C., Stolwijk, N.A., Bracht, H., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 1997; Volume 143, pp. 321–326. [Google Scholar] [CrossRef]
- Garimella, N.; Ode, M.; Ikeda, M.; Murakami, H.; Sohn, Y.H. Effects of Ir or Ta alloying addition on interdiffusion of L12-Ni3Al. Intermetallics 2008, 16, 1095–1103. [Google Scholar] [CrossRef]
- Mu, N.; Izumi, T.; Zhang, L.; Gleeson, B. The development and performance of novel Pt+Hf-modified γ′-Ni3Al+γ-Ni bond coatings for advanced thermal barrier coatings systems. In Superalloys 2008; Reed, R.C., Green, K.A., Caron, P., Gabb, T.P., Fahrmann, M.G., Huron, E.S., Woodard, S.A., Eds.; The Minerals, Metals & Materials Society: Pittsburgh, PA, USA, 2008; pp. 629–637. [Google Scholar]
- Biborski, A. Chemical Ordering Kinetics and Thermal Vacancy Thermodynamics in B2 Binary Intermetallics: Simulation Study. Ph.D. Thesis, Jagiellonian University of Krakow, Krakow, Poland, 2010. [Google Scholar]
- Kentzinger, E.; Pierron-Bohnes, V.; Cadeville, M.C.; Zemirli, M.; Bouzar, H.; Benakki, M.; Khan, M.A. Monte Carlo Simulations of Long Range Order Kinetics in B2 and DO3 Phases. In Defect and Diffusion Forum; Mehrer, H., Herzig, C., Stolwijk, N.A., Bracht, H., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 1997; Volume 143, pp. 333–338. [Google Scholar] [CrossRef]
- Leitner, M.; Vogtenhuber, D.; Pfeiler, W.; Püschl, W. Monte-Carlo simulation of atom kinetics in intermetallics: Correcting the jump rates in Ni3Al. Intermetallics 2010, 18, 1091–1098. [Google Scholar] [CrossRef]
- Kozubski, R.; Sołtys, J.; Cadeville, M.C.; Pierron-Bohnes, V.; Kim, T.H.; Schwander, P.; Hahn, J.P.; Kostorz, G.; Morgiel, J. Long-range ordering kinetics and ordering energy in Ni3Al-based γ′ alloys. Intermetallics 1993, 1, 139–150. [Google Scholar] [CrossRef]
- Kim, S.M. Vacancy properties in Cu3Au-type ordered fcc alloys. J. Mater. Res. 1991, 6, 1455–1460. [Google Scholar] [CrossRef]
- Mattsson, T.R.; Mattsson, A.E. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys. Rev. B 2002, 66, 214110. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, R.; Hickel, T.; Neugebauer, J. Vacancy formation energies in fcc metals: Influence of exchange-correlation functionals and correction schemes. Phys. Rev. B 2012, 85, 144118. [Google Scholar] [CrossRef]
- Oramus, P.; Kozlowski, M.; Kozubski, R.; Pierron-Bohnes, V.; Cadeville, M.C.; Pfeiler, W. Dynamics of atomic ordering in intermetallics. Mater. Sci. Eng. A 2004, 365, 166–171. [Google Scholar] [CrossRef]
- Mohan Rao, P.V.; Murthy, K.S.; Suryanarayana, S.V.; Naidu, S.N. X-Ray determination of the Debye-Waller factors and order parameters of Ni3Al alloys. J. Appl. Crystallogr. 1993, 26, 670–676. [Google Scholar] [CrossRef]
- Kozubski, R.; Pfeiler, W. Kinetics of defect recovery and long-range ordering in Ni3Al+B-II. Atomic jump processes studied by “order-order” relaxation experiments. Acta Mater. 1996, 44, 1573–1579. [Google Scholar] [CrossRef]
- Dimitrov, C.; Dimitrov, O. Ordering Kinetics and Atomic Mobility in Ni3Al Intermetallic Compounds. In Defect and Diffusion Forum; Mehrer, H., Herzig, C., Stolwijk, N.A., Bracht, H., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Swittzerland, 1997; Volume 143, pp. 251–256. [Google Scholar] [CrossRef]
- Sowa, P.; Kozubski, R.; Biborski, A.; Levchenko, E.V.; Evteev, A.V.; Belova, I.V.; Murch, G.E.; Pierron-Bohnes, V. Self-diffusion and ‘order–order’ kinetics in B2-ordering AB binary systems with a tendency for triple-defect formation: Monte Carlo simulation. Philos. Mag. 2013, 93, 1987–1998. [Google Scholar] [CrossRef]
- Nikiel, M.; Kozubski, R. “Order–Order” Kinetics in Ni50.5Al49.5 single crystal by quasi-residual resistometry. Intermetallics 2012, 25, 5–8. [Google Scholar] [CrossRef]
- Revell, L.E.; Williamson, B.E. Why are some reactions slower at higher temperatures? J. Chem. Educ. 2013, 90, 1024–1027. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Hernandez, J.J.; Arrieta-Gonzalez, C.D.; Chacon-Nava, J.G.; Porcayo-Palafox, E.; Sanchez-Carrillo, M.; Flores-De los Rios, J.P.; Pedraza-Basulto, G.K.; Diaz-Mendez, S.E.; Porcayo-Calderon, J. Effect of Noble Metal Addition on the Disorder Dynamics of Ni3Al by Means of Monte Carlo Simulation. Materials 2020, 13, 4832. https://doi.org/10.3390/ma13214832
Ramos-Hernandez JJ, Arrieta-Gonzalez CD, Chacon-Nava JG, Porcayo-Palafox E, Sanchez-Carrillo M, Flores-De los Rios JP, Pedraza-Basulto GK, Diaz-Mendez SE, Porcayo-Calderon J. Effect of Noble Metal Addition on the Disorder Dynamics of Ni3Al by Means of Monte Carlo Simulation. Materials. 2020; 13(21):4832. https://doi.org/10.3390/ma13214832
Chicago/Turabian StyleRamos-Hernandez, J.J., C.D. Arrieta-Gonzalez, J.G. Chacon-Nava, E. Porcayo-Palafox, M. Sanchez-Carrillo, J.P. Flores-De los Rios, G.K. Pedraza-Basulto, S.E. Diaz-Mendez, and J. Porcayo-Calderon. 2020. "Effect of Noble Metal Addition on the Disorder Dynamics of Ni3Al by Means of Monte Carlo Simulation" Materials 13, no. 21: 4832. https://doi.org/10.3390/ma13214832
APA StyleRamos-Hernandez, J. J., Arrieta-Gonzalez, C. D., Chacon-Nava, J. G., Porcayo-Palafox, E., Sanchez-Carrillo, M., Flores-De los Rios, J. P., Pedraza-Basulto, G. K., Diaz-Mendez, S. E., & Porcayo-Calderon, J. (2020). Effect of Noble Metal Addition on the Disorder Dynamics of Ni3Al by Means of Monte Carlo Simulation. Materials, 13(21), 4832. https://doi.org/10.3390/ma13214832