Evaluation of Mechanical and Environmental Properties of Engineered Alkali-Activated Green Mortar
Abstract
:1. Introduction
2. Experimental Program
2.1. Wastes Material Characterization
2.2. Scanning Electron Microscope (SEM) Images
2.3. Design of the Alkali-Activated Mix Designs
2.3.1. High Volume Fly Ash Mix Design
2.3.2. High Volume Palm Oil Fuel Ash Mix Design
2.3.3. High Volume GBFS Mix Design
2.3.4. High Volume Ceramic Waste Mix Design
2.4. Test Procedure
3. Results and Discussion
3.1. Mechanical Properties
3.2. Correlate the Strength with the Chemical Composition of the Mixture
- i.
- In AAMs with high volume FA, the increment in the SiO2 to Al2O3 ratio resulted in the reaction of Al2O3 content in the earlier stages. Therefore, the gradual increment of the SiO2 content in further stages provided more silicate for condensation and reaction between the silicate species and this caused the dominance of oligomeric silicates. The domination of SiO2 content reduced the rate of condensation resulting in gradual hardening of the AAMs (Figure 7a).
- ii.
- In AAMs with high volume POFA, the increase in the POFA to GBFS ratio of the AAMs delayed the ultimate CS (Figure 7b). The developed strength was inversely correlated to the silicate to aluminium ratio, which was recorded to be an optimum of 55.6 MPa for a silicate to aluminium ratio of 6.5.
- iii.
- In AAMs with high volume GBFS, the 28-days CS was highest (97 MPa) for calcium to silicate ratio of 0.97. A ratio of silicate to aluminium of 2.75 and 3.25 reduced the 28-days CS to 86.4 and 85.1 MPa, respectively (Figure 7c).
- iv.
- In AAMs with high volume WCP, it was observed that the compressive strength was enhanced with the decrease in SiO2:Al2O3 and the highest 28-days CS (67 MPa) was recorded with calcium to silicate ratio higher than 0.40 (Figure 7d).
3.3. Evaluation of SEM Results
3.4. Sustainable Properties
4. Developing an Empirical Equation to Predict Compressive Strength
5. Conclusions
- The X-ray fluorescence spectroscopy (XRF) results confirmed that the ratio of GBFS to FA significantly controls the SiO2, CaO, and Al2O3 contents in ternary blended AAM designs.
- AAM designs with a high volume of GBFS provided the highest 28-day CS, were in these ternary blended mixes. The ratio of FA to POFA had a minor effect on CS; however, increasing the GBFS percentage substantially improved the CS.
- The CS in all AAM designs declined as a result of increasing the FA content. SEM images also confirmed that the AAM designs using 50% FA possessed less non-reactive particles and micro-cracks compared with 70% FA.
- The CS in AAM designs with a high volume of WCP and FA was ranked the lowest among all AAM designs—at around 20 MPa. SEM images also confirmed that the formation of a large amount of C-S-H crystals in AAM designs with a low content of WCP increased the density, which was attributed to the pozzolanic reaction of SiO2 with Ca(OH)2 during the hydration process.
- The industrial waste materials had significantly lower EE and CO2 emissions compared to OPC. The AAM designs that contained a high FA content provided the lowest EE and CO2 emissions compared to other design mixes.
Author Contributions
Funding
Conflicts of Interest
References
- Jacobsen, S.; Jahren, P. Binding of CO2 by carbonation of Norwegian OPC concrete. In Proceedings of the CANMET/ACI International Conference on Sustainability and Concrete Technology, Lyon, France, 23–26 October 2002. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- UN Environment; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Katare, V.D.; Madurwar, M.V.; Raut, S. Agro-Industrial Waste as a Cementitious Binder for Sustainable Concrete: An Overview. In Sustainable Waste Management: Policies and Case Studies; Springer: Singapore, 2020; pp. 683–702. [Google Scholar]
- Al-Kutti, W.; Nasir, M.; Johari, M.A.M.; Islam, A.S.; Manda, A.A.; Blaisi, N.I. An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Constr. Build. Mater. 2018, 159, 567–577. [Google Scholar] [CrossRef]
- Almalkawi, A.T.; Balchandra, A.; Soroushian, P. Potential of using industrial wastes for production of geopolymer binder as green construction materials. Constr. Build. Mater. 2019, 220, 516–524. [Google Scholar] [CrossRef]
- Golewski, G.L. Green concrete composite incorporating fly ash with high strength and fracture toughness. J. Clean. Prod. 2018, 172, 218–226. [Google Scholar] [CrossRef]
- Panesar, D.K.; Seto, K.E.; Churchill, C.J. Impact of the selection of functional unit on the life cycle assessment of green concrete. Int. J. Life Cycle Assess. 2017, 22, 1969–1986. [Google Scholar] [CrossRef]
- Zawawi, M.N.A.A.; Muthusamy, K.; Majeed, A.P.A.; Musa, R.M.; Budiea, A.M.A. Mechanical properties of oil palm waste lightweight aggregate concrete with fly ash as fine aggregate replacement. J. Build. Eng. 2020, 27, 100924. [Google Scholar] [CrossRef]
- Li, F.; Liu, L.; Yang, Z.; Li, S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). J. Hazard. Mater. 2020, 401, 123339. [Google Scholar] [CrossRef]
- Anderson, D.J.; Smith, S.T.; Au, F.T. Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Constr. Build. Mater. 2016, 117, 20–28. [Google Scholar] [CrossRef]
- Ranjbar, N.; Behnia, A.; Alsubari, B.; Birgani, P.M.; Jumaat, M.Z. Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash. J. Clean. Prod. 2016, 112, 723–730. [Google Scholar] [CrossRef]
- Kastiukas, G.; Zhou, X.; Castro-Gomes, J. Preparation conditions for the synthesis of alkali-activated binders using tungsten mining waste. J. Mater. Civ. Eng. 2017, 29, 04017181. [Google Scholar] [CrossRef]
- Nikoo, M.; Torabian Moghadam, F.; Sadowski, Ł. Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv. Mater. Sci. Eng. 2015, 2015, 849126. [Google Scholar] [CrossRef]
- Nikoo, M.; Zarfam, P.; Sayahpour, H. Determination of compressive strength of concrete using Self Organization Feature Map (SOFM). Eng. Comput. 2015, 31, 113–121. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Li, Q.; Wang, J.; Ling, Y. Fabrication and Engineering Properties of Concretes Based on Geopolymers/Alkali-activated Binders—A Review. J. Clean. Prod. 2020, 258, 120896. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Yang, T.; Zhang, Z. The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid. Constr. Build. Mater. 2018, 186, 1177–1187. [Google Scholar] [CrossRef]
- Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Mirza, J.; Tahir, M.M. Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater. 2019, 210, 78–92. [Google Scholar] [CrossRef]
- Son, H.; Park, S.M.; Seo, J.H.; Lee, H.K. Effect of CaSO4 incorporation on pore structure and drying shrinkage of alkali-activated binders. Materials 2019, 12, 1673. [Google Scholar] [CrossRef] [Green Version]
- Huseien, G.F.; Shah, K.W. Durability and life cycle evaluation of self-compacting concrete containing fly ash as GBFS replacement with alkali activation. Constr. Build. Mater. 2020, 235, 117458. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, A.; Prasad, B. Mechanical behavior of non-silicate based alkali-activated ground granulated blast furnace slag. Constr. Build. Mater. 2019, 198, 494–500. [Google Scholar] [CrossRef]
- Golewski, G.L. Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition. Energies 2020, 13, 2184. [Google Scholar] [CrossRef]
- Meesala, C.R.; Verma, N.K.; Kumar, S. Critical review on fly-ash based geopolymer concrete. Struct. Concr. 2020, 21, 1013–1028. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, P.; Goyal, P. Reviewing the behaviour of high volume fly ash based self compacting concrete. J. Build. Eng. 2019, 26, 100882. [Google Scholar] [CrossRef]
- Jokhio, G.; Hamada, H.M.; Humada, A.M.; Gul, Y.; Abu-Tair, A. Environmental benefits of incorporating palm oil fuel ash in cement concrete and cement mortar. E3S Web Conf. 2020, 158, 03005. [Google Scholar] [CrossRef]
- Tang, W.L.; Lee, H.S.; Vimonsatit, V.; Htut, T.; Singh, J.K.; Wan Hassan, W.N.F.; Ismail, M.A.; Seikh, A.H.; Alharthi, N. Optimization of micro and nano palm oil fuel ash to determine the carbonation resistance of the concrete in accelerated condition. Materials 2019, 12, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.M.; Volpi, L.; Pini, M.; Siligardi, C.; García-Muiña, F.E.; Settembre-Blundo, D. Building a sustainability benchmarking framework of ceramic tiles based on life cycle sustainability assessment (LCSA). Resources 2019, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Samadi, M.; Huseien, G.F.; Mohammadhosseini, H.; Lee, H.S.; Lim, N.H.A.S.; Tahir, M.M.; Alyousef, R. Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. J. Clean. Prod. 2020, 266, 121825. [Google Scholar] [CrossRef]
- Mohit, M.; Sharifi, Y. Thermal and microstructure properties of cement mortar containing ceramic waste powder as alternative cementitious materials. Constr. Build. Mater. 2019, 223, 643–656. [Google Scholar] [CrossRef]
- Goldaran, R.; Turer, A. Application of acoustic emission for damage classification and assessment of corrosion in pre-stressed concrete pipes. Measurement 2020, 160, 107855. [Google Scholar] [CrossRef]
- Lu, G.; Fan, Z.; Sun, Z.; Liu, P.; Leng, Z.; Wang, D.; Oeser, M. Improving the polishing resistance of cement mortar by using recycled ceramic. Resour. Conserv. Recycl. 2020, 158, 104796. [Google Scholar] [CrossRef]
- Awoyera, P.; Adesina, A.; Sivakrishna, A.; Gobinath, R.; Kumar, K.R.; Srinivas, A. Alkali activated binders: Challenges and opportunities. Mater. Today Proc. 2020, 27, 40–43. [Google Scholar] [CrossRef]
- Adesina, A. Properties of alkali activated slag concrete incorporating waste materials as aggregate: A review. In Materials Science Forum; Trans Tech Publications: Zurich, Switzerland, 2019. [Google Scholar]
- Goldaran, R.; Lofollahi-Yaghin, M.A.; Aminfar, M.H.; Turer, A. Investigation of attenuation and acoustic wave propagation path caused by corrosion for reliability assessment of prestressed pipe monitoring using Acoustic Emission technique. Modares Mech. Eng. 2017, 17, 306–314. [Google Scholar]
- C618-15 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2015.
- Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. or [50-mm] Cube Specimens); ASTM International: West Conshohocken, PA, USA, 2013.
- Huseien, G.F.; Shah, K.W. Performance evaluation of alkali-activated mortars containing industrial wastes as surface repair materials. J. Build. Eng. 2020, 30, 101234. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yehualaw, M.D.; Vo, D.H.; Huynh, T.P.; Largo, A. Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature. Constr. Build. Mater. 2019, 223, 657–667. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Reisinger, A. IPCC Fourth Assessment Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Hammond, G.; Jones, C. Embodied Carbon: The Inventory of Carbon and Energy (ICE); BSRIA: Bath, UK, 2011. [Google Scholar]
Material | GBFS | FA | POFA | WCP |
---|---|---|---|---|
Physical characteristics | ||||
Specific gravity | 2.9 | 2.2 | 1.96 | 2.6 |
Medium particle size (μm) | 12.8 | 10 | 8.2 | 35 |
Chemical composition (% by mass) | ||||
SiO2 | 30.8 | 57.20 | 64.20 | 72.6 |
Al2O3 | 10.9 | 28.81 | 4.25 | 12.6 |
Fe2O3 | 0.64 | 3.67 | 3.13 | 0.56 |
CaO | 51.8 | 5.16 | 10.20 | 0.02 |
MgO | 4.57 | 1.48 | 5.90 | 0.99 |
K2O | 0.36 | 0.94 | 8.64 | 0.03 |
Na2O | 0.45 | 0.08 | 0.10 | 13.5 |
SO3 | 0.06 | 0.10 | 0.09 | 0.01 |
Loss on ignition (LOI) | 0.22 | 0.12 | 1.73 | 0.13 |
No. | Binder (Mass %) | SiO2:Al2O3 | CaO:SiO2 | CaO:Al2O3 | ||
---|---|---|---|---|---|---|
FA | GBFS | POFA | ||||
1 | 70 | 30 | 0 | 2.10 | 0.39 | 0.82 |
2 | 20 | 10 | 2.31 | 0.28 | 0.66 | |
3 | 60 | 40 | 0 | 2.15 | 0.51 | 1.10 |
4 | 30 | 10 | 2.38 | 0.39 | 0.94 | |
5 | 20 | 20 | 2.62 | 0.29 | 0.76 | |
6 | 50 | 50 | 0 | 2.22 | 0.65 | 1.43 |
7 | 40 | 10 | 2.47 | 0.51 | 1.26 | |
8 | 30 | 20 | 2.74 | 0.40 | 1.08 | |
9 | 20 | 30 | 3.02 | 0.29 | 0.89 |
No. | Binder (Mass %) | SiO2:Al2O3 | CaO:SiO2 | CaO:Al2O3 | ||
---|---|---|---|---|---|---|
POFA | GBFS | FA | ||||
1 | 70 | 30 | 0 | 8.63 | 0.42 | 3.61 |
2 | 20 | 10 | 7.04 | 0.32 | 2.23 | |
3 | 60 | 40 | 0 | 7.32 | 0.53 | 3.86 |
4 | 30 | 10 | 6.13 | 0.41 | 2.54 | |
5 | 20 | 20 | 5.33 | 0.31 | 1.66 | |
6 | 50 | 50 | 0 | 6.25 | 0.65 | 4.08 |
7 | 40 | 10 | 5.34 | 0.52 | 2.80 | |
8 | 30 | 20 | 4.72 | 0.41 | 1.94 | |
9 | 20 | 30 | 4.27 | 0.31 | 1.31 |
No. | Binder (Mass %) | |||||
---|---|---|---|---|---|---|
GBFS | FA | POFA | SiO2:Al2O3 | CaO:SiO2 | CaO:Al2O3 | |
1 | 70 | 30 | 0 | 2.38 | 0.97 | 2.32 |
2 | 20 | 10 | 2.85 | 0.97 | 2.77 | |
3 | 10 | 20 | 3.53 | 0.96 | 3.41 | |
4 | 0 | 30 | 4.57 | 0.96 | 4.41 | |
5 | 60 | 40 | 0 | 2.29 | 0.80 | 1.83 |
6 | 30 | 10 | 2.69 | 0.80 | 2.15 | |
7 | 20 | 20 | 3.25 | 0.79 | 2.59 | |
8 | 10 | 30 | 4.06 | 0.79 | 3.23 | |
9 | 0 | 40 | 5.35 | 0.79 | 4.25 | |
10 | 50 | 50 | 0 | 2.22 | 0.65 | 1.43 |
11 | 40 | 10 | 2.57 | 0.65 | 1.66 | |
12 | 30 | 20 | 3.04 | 0.65 | 1.97 | |
13 | 20 | 30 | 3.68 | 0.65 | 2.39 | |
14 | 10 | 40 | 4.65 | 0.65 | 3.03 | |
15 | 0 | 50 | 6.25 | 0.65 | 4.07 |
No. | Binder (Mass %) | |||||
---|---|---|---|---|---|---|
WCP | FA | GBFS | SiO2:Al2O3 | CaO:SiO2 | CaO:Al2O3 | |
1 | 70 | 0 | 30 | 5.09 | 0.26 | 1.31 |
2 | 10 | 20 | 4.62 | 0.17 | 0.79 | |
3 | 60 | 0 | 40 | 4.79 | 0.37 | 1.77 |
4 | 10 | 30 | 4.35 | 0.27 | 1.19 | |
5 | 20 | 20 | 4.01 | 0.18 | 0.74 | |
6 | 50 | 0 | 50 | 4.48 | 0.50 | 2.24 |
7 | 10 | 40 | 4.08 | 0.39 | 1.59 | |
8 | 20 | 30 | 3.77 | 0.29 | 1.09 | |
9 | 30 | 20 | 3.53 | 0.20 | 0.70 |
Materials | CO2 Emission (kg CO2/kg) | EE (MJ/kg) |
---|---|---|
WCP | 0.04 | 1.11 |
POFA | 0.06 | 1.58 |
FA | 0.01 | 0.17 |
GBFS | 0.15 | 2.37 |
OPC | 0.90 | 5.13 |
AAM Designs | Binder Constitution (Composed of Industrial Waste Materials) | Sustainable and Mechanical Features | |||||
---|---|---|---|---|---|---|---|
FA | GBFS | WCP | POFA | EE (MJ/kg) | CO2 Emission (kgCO2/kg) | 28-Days CS (MPa) | |
1 | 0.70 | 0.30 | 0.00 | 0.00 | 0.83 | 0.05 | 78.18 |
2 | 0.70 | 0.20 | 0.00 | 0.10 | 0.75 | 0.04 | 65.89 |
3 | 0.60 | 0.40 | 0.00 | 0.00 | 1.05 | 0.06 | 80.51 |
4 | 0.60 | 0.30 | 0.00 | 0.10 | 0.97 | 0.05 | 81.70 |
5 | 0.60 | 0.20 | 0.00 | 0.20 | 0.89 | 0.04 | 52.60 |
6 | 0.50 | 0.50 | 0.00 | 0.00 | 1.27 | 0.08 | 80.46 |
7 | 0.50 | 0.40 | 0.00 | 0.10 | 1.19 | 0.07 | 76.90 |
8 | 0.50 | 0.30 | 0.00 | 0.20 | 1.11 | 0.06 | 70.40 |
9 | 0.50 | 0.20 | 0.00 | 0.30 | 1.03 | 0.05 | 46.24 |
10 | 0.00 | 0.30 | 0.00 | 0.70 | 1.81 | 0.08 | 34.53 |
11 | 0.10 | 0.20 | 0.00 | 0.70 | 1.59 | 0.07 | 23.04 |
12 | 0.00 | 0.40 | 0.00 | 0.60 | 1.89 | 0.09 | 45.96 |
13 | 0.10 | 0.30 | 0.00 | 0.60 | 1.67 | 0.08 | 37.80 |
14 | 0.20 | 0.20 | 0.00 | 0.60 | 1.45 | 0.06 | 28.80 |
15 | 0.00 | 0.50 | 0.00 | 0.50 | 1.97 | 0.10 | 55.64 |
16 | 0.10 | 0.40 | 0.00 | 0.50 | 1.75 | 0.09 | 47.10 |
17 | 0.20 | 0.30 | 0.00 | 0.50 | 1.53 | 0.07 | 40.60 |
18 | 0.30 | 0.20 | 0.00 | 0.50 | 1.31 | 0.06 | 36.80 |
19 | 0.30 | 0.70 | 0.00 | 0.00 | 1.71 | 0.11 | 85.09 |
20 | 0.20 | 0.70 | 0.00 | 0.10 | 1.85 | 0.11 | 97.75 |
21 | 0.10 | 0.70 | 0.00 | 0.20 | 1.99 | 0.11 | 86.40 |
22 | 0.00 | 0.70 | 0.00 | 0.30 | 2.13 | 0.12 | 70.53 |
23 | 0.40 | 0.60 | 0.00 | 0.00 | 1.49 | 0.09 | 80.68 |
24 | 0.30 | 0.60 | 0.00 | 0.10 | 1.63 | 0.10 | 72.44 |
25 | 0.20 | 0.60 | 0.00 | 0.20 | 1.77 | 0.10 | 71.93 |
26 | 0.10 | 0.60 | 0.00 | 0.30 | 1.91 | 0.11 | 70.84 |
27 | 0.00 | 0.60 | 0.00 | 0.40 | 2.05 | 0.11 | 70.22 |
28 | 0.50 | 0.50 | 0.00 | 0.00 | 1.27 | 0.08 | 80.46 |
29 | 0.40 | 0.50 | 0.00 | 0.10 | 1.41 | 0.08 | 80.43 |
30 | 0.30 | 0.50 | 0.00 | 0.20 | 1.55 | 0.09 | 67.22 |
31 | 0.20 | 0.50 | 0.00 | 0.30 | 1.69 | 0.09 | 65.14 |
32 | 0.10 | 0.50 | 0.00 | 0.40 | 1.83 | 0.10 | 56.34 |
33 | 0.00 | 0.50 | 0.00 | 0.50 | 1.97 | 0.10 | 55.64 |
34 | 0.00 | 0.30 | 0.70 | 0.00 | 1.49 | 0.07 | 34.02 |
35 | 0.10 | 0.20 | 0.70 | 0.00 | 1.27 | 0.06 | 22.40 |
36 | 0.00 | 0.40 | 0.60 | 0.00 | 1.61 | 0.08 | 68.44 |
37 | 0.10 | 0.30 | 0.60 | 0.00 | 1.39 | 0.07 | 52.08 |
38 | 0.20 | 0.20 | 0.60 | 0.00 | 1.17 | 0.06 | 46.76 |
39 | 0.00 | 0.50 | 0.50 | 0.00 | 1.74 | 0.09 | 74.12 |
40 | 0.10 | 0.40 | 0.50 | 0.00 | 1.52 | 0.08 | 66.19 |
41 | 0.20 | 0.30 | 0.50 | 0.00 | 1.30 | 0.07 | 60.17 |
42 | 0.30 | 0.20 | 0.50 | 0.00 | 1.08 | 0.05 | 56.47 |
Average | 1.50 | 0.08 | 61.30 | ||||
STDEV | 0.36 | 0.02 | 18.70 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faridmehr, I.; Fahim Huseien, G.; Hajmohammadian Baghban, M. Evaluation of Mechanical and Environmental Properties of Engineered Alkali-Activated Green Mortar. Materials 2020, 13, 4098. https://doi.org/10.3390/ma13184098
Faridmehr I, Fahim Huseien G, Hajmohammadian Baghban M. Evaluation of Mechanical and Environmental Properties of Engineered Alkali-Activated Green Mortar. Materials. 2020; 13(18):4098. https://doi.org/10.3390/ma13184098
Chicago/Turabian StyleFaridmehr, Iman, Ghasan Fahim Huseien, and Mohammad Hajmohammadian Baghban. 2020. "Evaluation of Mechanical and Environmental Properties of Engineered Alkali-Activated Green Mortar" Materials 13, no. 18: 4098. https://doi.org/10.3390/ma13184098
APA StyleFaridmehr, I., Fahim Huseien, G., & Hajmohammadian Baghban, M. (2020). Evaluation of Mechanical and Environmental Properties of Engineered Alkali-Activated Green Mortar. Materials, 13(18), 4098. https://doi.org/10.3390/ma13184098