Effect of pH Cycling Frequency on Glass–Ceramic Corrosion
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Experimental Design
2.3. Characterizations
3. Results
3.1. Weight Loss
3.2. ICP Analysis
3.3. XPS Analysis
3.4. SEM Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sorensen, J. The IPS Empress 2 system: Defining the possibilities. Quintessence Dent. Technol. 1999, 22, 153–163. [Google Scholar]
- Raigrodski, A.J.; Chiche, G.J. The safety and efficacy of anterior ceramic fixed partial dentures: A review of the literature. J. Prosthet. Dent. 2001, 86, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, M.; Zanotto, E.D. Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res. A 2016, 105, 1552–4965, (Electronic). [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Pjetursson, B.E.; Zwahlen, M.; Hämmerle, C.H.F. A systematic review of the survival and complication rates of all-ceramic and metal–ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin. Oral Implant. Res. 2007, 18, 86–96. [Google Scholar] [CrossRef]
- Lahiwel, A.; Kalghoum, I.; Harzallah, B.; Cherif, M.; Hadyaoui, D. All-Ceramic versus Metal-Ceramic Tooth Supported Single Crowns with a Minimum Follow-up Time of 3 Years; Survival and Complications: A Systematic Literature Review. J. Dent. Oral Disord. Ther. 2018, 6, 1–14. [Google Scholar]
- Monaco, C.; Llukacej, A.; Baldissara, P.; Arena, A.; Scotti, R. Zirconia-based versus metal-based single crowns veneered with overpressing ceramic for restoration of posterior endodontically treated teeth: 5-year results of a randomized controlled clinical study. J. Dent. 2017, 65, 56–63. [Google Scholar] [CrossRef]
- Norström Saarva, V.; Bjerkstig, G.; Örtorp, A.; Svanborg, P. A Three-Year Retrospective Study on Survival of Ceramic-Veneered Zirconia (Y-TZP) Fixed Dental Prostheses Performed in Private Practices. Int. J. Dent. 2017, 2017, 9618306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [Green Version]
- Garling, A.; Sasse, M.; Becker, M.E.E.; Kern, M. Fifteen-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J. Dent. 2019, 89, 103178. [Google Scholar] [CrossRef]
- Passia, N.; Chaar, M.S.; Kern, M. Outcome of posterior fixed dental prostheses made from veneered zirconia over an observation period of up to 13 years. J. Dent. 2019, 86, 126–129. [Google Scholar] [CrossRef]
- Creugers, N.H.J.; Käyser, A.F.; Van’t Hof, M.A. A meta-analysis of durability data on conventional fixed bridges. Community Dent. Oral Epidemiol. 1994, 22, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Scurria, M.S.; Bader, J.D.; Shugars, D.A. Meta-analysis of fixed partial denture survival: Prostheses and abutments. J. Prosthet. Dent. 1998, 79, 459–464. [Google Scholar] [CrossRef]
- Walton, T.R. An up to 15-year longitudinal study of 515 metal-ceramic FPDs: Part 1. Outcome. Int. J. Prosthodont. 2002, 15, 439–445. [Google Scholar] [PubMed]
- Chaar, M.S.; Passia, N.; Kern, M. Long-term clinical outcome of posterior metal-ceramic crowns fabricated with direct metal laser-sintering technology. J. Prosthodont. Res. 2020, 64, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K. Degradability of dental ceramics. Adv. Dent. Res. 1992, 6, 82–89. [Google Scholar] [CrossRef]
- Milleding, P.; Haraldsson, C.; Karlsson, S. Ion leaching from dental ceramics during static in vitro corrosion testing. J. Biomed. Mater. Res. A 2002, 61, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Kukiattrakoon, B.; Hengtrakool, C.; Kedjarune-Leggat, U. The effect of acidic agents on surface ion leaching and surface characteristics of dental porcelains. J. Prosthet. Dent. 2010, 103, 148–162. [Google Scholar] [CrossRef]
- Lussi, A.; Megert, B.; Peter Shellis, R.; Wang, X. Analysis of the erosive effect of different dietary substances and medications. Br. J. Nutr. 2012, 107, 252–262. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, W. The Importance of Food pH in Commercial Canning Operations. Available online: https://extension.okstate.edu/fact-sheets/the-importance-of-food-ph-in-commercial-canning-operations.html (accessed on 17 August 2020).
- Firouz, F.; Vafaee, F.; Khamverdi, Z.; Khazaei, S.; Gholiabad, S.G.; Mohajeri, M. Effect of Three Commonly Consumed Beverages on Surface Roughness of Polished and Glazed Zirconia-Reinforced Lithium Silicate Glass Ceramics. Front. Dent. 2019, 16, 296–302. [Google Scholar]
- Esquivel-Upshaw, J.F.; Dieng, F.Y.; Clark, A.E.; Neal, D.; Anusavice, K.J. Surface Degradation of Dental Ceramics as a Function of Environmental pH. J. Dent. Res. 2013, 92, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Upshaw, J.; Rose, W.; Oliveira, E.; Yang, M.; Clark, A.E.; Anusavice, K. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance. J. Prosthodont. 2013, 22, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Buciumeanu, M.; Queiroz, J.R.C.; Martinelli, A.E.; Silva, F.S.; Henriques, B. The effect of surface treatment on the friction and wear behavior of dental Y-TZP ceramic against human enamel. Tribol. Int. 2017, 116, 192–198. [Google Scholar] [CrossRef]
- Ajjal, T.T.; Ebdewi, A.A. Degradation Effect on the Flexural Strength & Micro-Hardness of IPS e-max Laminated Ceramics. Int. J. Eng. Innov. 2019, 8, 172–180. [Google Scholar]
- Mohsen, C. Corrosion effect on the flexural strength & micro-hardness of ips e-max ceramics. Open J. Stomatol. 2011, 1, 29–35. [Google Scholar]
- International Organization for Standardization No.6872. Dentistry-Ceramic Materials; International Organization for Standardization No.6872: Geneva, Switzerland, 2015. [Google Scholar]
- Esquivel-Upshaw, J.F.; Ren, F.; Hsu, S.M.; Dieng, F.Y.; Neal, D.; Clark, A.E. Novel Testing for Corrosion of Glass-Ceramics for Dental Applications. J. Dent. Res. 2017, 97, 296–302. [Google Scholar] [CrossRef]
- Hsu, S.M.; Ren, F.; Batich, C.; Clark, A.E.; Craciun, V.; Esquivel-Upshaw, J.F. Dissolution activation energy of a fluorapatite glass-ceramic veneer for dental applications. Mater. Sci. Eng. C 2020, 111, 110802. [Google Scholar] [CrossRef]
- IPS e.Max Zirpress Scientific Documentation; Ivoclar Vivadent Download Center of Scientific Documentation. Ivoclar Vivadent: Schaan, Lichtenstein. Available online: https://www.ivoclarvivadent.com/en/download-center/scientific-documentations/#I (accessed on 17 August 2020).
- Maraghechi, H.; Rajabipour, F.; Pantano, C.G.; Burgos, W.D. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cem. Concr. Res. 2016, 87, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rajmohan, N.; Frugier, P.; Gin, S. Composition effects on synthetic glass alteration mechanisms: Part 1. Experiments. Chem. Geol. 2010, 279, 106–119. [Google Scholar] [CrossRef]
- Frankel, G.S.; Vienna, J.D.; Lian, J.; Scully, J.R.; Gin, S.; Ryan, J.V.; Wang, J.; Kim, S.H.; Windl, W.; Du, J. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. NPJ Mater. Degrad. 2018, 2, 15. [Google Scholar] [CrossRef]
- Gayer, K.H.; Thompson, L.C.; Zajicek, O.T. The Solubility of Aluminum hydroxide in acidic and Basic Media at 25 °C. Can. J. Chem. 1958, 36, 1268–1271. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Na2O | K2O | CaO | ZnO | ZrO2 | P2O5 | F | Other Oxides | Pigments |
---|---|---|---|---|---|---|---|---|---|---|---|
wt % | 57.0–62.0 | 12.0–16.0 | 7.0–10.0 | 6.0–8.0 | 2.0–4.0 | 1.5–2.5 | 1.0–2.0 | 0.5–1.0 | 0–6.0 | 0.2–0.9 | |
atomic% | 58.6–51.6 | 14.5–15.7 | 13.9–16.1 | 7.8–8.5 | 2.2–3.5 | 0.7–1.0 | 0.4–0.7 | 1.6–2.6 |
Atomic Ratio | Si | Al | Na | K | Ca | Mg | P | Zn | Zr | N | F | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ref | 53.7 | 11.5 | 7.6 | 5.9 | 3.5 | 3.3 | 1.3 | 1.3 | 0.6 | 9.9 | 1.4 | |
pH 10, 3 d | 60.0 | 13.9 | 13.9 | 9.3 | 2.9 | |||||||
pH 10, 30 d | 59.8 | 15.8 | 9.5 | 12.0 | 2.9 | |||||||
pH 2, 3 d | 94.8 | 5.2 | ||||||||||
pH 2, 30 d | 56.0 | 19.4 | 17.7 | 6.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, S.-M.; Ren, F.; Batich, C.D.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Effect of pH Cycling Frequency on Glass–Ceramic Corrosion. Materials 2020, 13, 3655. https://doi.org/10.3390/ma13163655
Hsu S-M, Ren F, Batich CD, Clark AE, Neal D, Esquivel-Upshaw JF. Effect of pH Cycling Frequency on Glass–Ceramic Corrosion. Materials. 2020; 13(16):3655. https://doi.org/10.3390/ma13163655
Chicago/Turabian StyleHsu, Shu-Min, Fan Ren, Christopher D. Batich, Arthur E. Clark, Dan Neal, and Josephine F. Esquivel-Upshaw. 2020. "Effect of pH Cycling Frequency on Glass–Ceramic Corrosion" Materials 13, no. 16: 3655. https://doi.org/10.3390/ma13163655
APA StyleHsu, S.-M., Ren, F., Batich, C. D., Clark, A. E., Neal, D., & Esquivel-Upshaw, J. F. (2020). Effect of pH Cycling Frequency on Glass–Ceramic Corrosion. Materials, 13(16), 3655. https://doi.org/10.3390/ma13163655