Next Article in Journal
On the Influence of Ultimate Number of Cycles on Lifetime Prediction for Compression Springs Manufactured from VDSiCr Class Spring Wire
Next Article in Special Issue
Demonstration of a SiC Protective Coating for Titanium Implants
Previous Article in Journal
Phase Field Simulation of Laminated Glass Beam
Previous Article in Special Issue
Comparative In Vitro Study of the Bond Strength of Composite to Carbon Fiber Versus Ceramic to Cobalt–Chromium Alloys Frameworks for Fixed Dental Prostheses
Article

A New Insight into Coating’s Formation Mechanism Between TiO2 and Alendronate on Titanium Dental Implant

1
Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
2
Division of Materials Physics, Centre of Excellence for Advanced Materials and Sensing Device, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
3
Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
4
Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
5
Department of Physics and Center for Micro- and Nanosciences and Technologies, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
6
Adentro dental studio, Petrova ul. 67, 10000 Zagreb, Croatia
*
Authors to whom correspondence should be addressed.
Materials 2020, 13(14), 3220; https://doi.org/10.3390/ma13143220
Received: 12 June 2020 / Revised: 14 July 2020 / Accepted: 17 July 2020 / Published: 20 July 2020
(This article belongs to the Special Issue Dental Implants and Materials)
Organophosphorus compounds, like bisphosphonates, drugs for treatment and prevention of bone diseases, have been successfully applied in recent years as bioactive and osseoinductive coatings on dental implants. An integrated experimental-theoretical approach was utilized in this study to clarify the mechanism of bisphosphonate-based coating formation on dental implant surfaces. Experimental validation of the alendronate coating formation on the titanium dental implant surface was carried out by X-ray photoelectron spectroscopy and contact angle measurements. Detailed theoretical simulations of all probable molecular implant surface/alendronate interactions were performed employing quantum chemical calculations at the density functional theory level. The calculated Gibbs free energies of (TiO2)10–alendronate interaction indicate a more spontaneous exergonic process when alendronate molecules interact directly with the titanium surface via two strong bonds, Ti–N and Ti–O, through simultaneous participation common to both phosphonate and amine branches. Additionally, the stability of the alendronate-modified implant during 7 day-immersion in a simulated saliva solution has been investigated by using electrochemical impedance spectroscopy. The alendronate coating was stable during immersion in the artificial saliva solution and acted as an additional barrier on the implant with overall resistivity, R ~ 5.9 MΩ cm2. View Full-Text
Keywords: titanium dental implant; alendronate sodium; surface coating; DFT; XPS; EIS titanium dental implant; alendronate sodium; surface coating; DFT; XPS; EIS
Show Figures

Graphical abstract

MDPI and ACS Style

Petrović, Ž.; Šarić, A.; Despotović, I.; Katić, J.; Peter, R.; Petravić, M.; Petković, M. A New Insight into Coating’s Formation Mechanism Between TiO2 and Alendronate on Titanium Dental Implant. Materials 2020, 13, 3220. https://doi.org/10.3390/ma13143220

AMA Style

Petrović Ž, Šarić A, Despotović I, Katić J, Peter R, Petravić M, Petković M. A New Insight into Coating’s Formation Mechanism Between TiO2 and Alendronate on Titanium Dental Implant. Materials. 2020; 13(14):3220. https://doi.org/10.3390/ma13143220

Chicago/Turabian Style

Petrović, Željka, Ankica Šarić, Ines Despotović, Jozefina Katić, Robert Peter, Mladen Petravić, and Marin Petković. 2020. "A New Insight into Coating’s Formation Mechanism Between TiO2 and Alendronate on Titanium Dental Implant" Materials 13, no. 14: 3220. https://doi.org/10.3390/ma13143220

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop