Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Microstructure Evolution
3.2. Mechanical Properties and Strengthening Mechanism
4. Corrosion Resistance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, K.; Wang, J.; Qiu, M.; Gao, F.; Wu, R.; Hou, L.; Zheng, H.; Zhang, J.; Zhang, M. Effects of Cold Rolling on Microstructural Evolution and Mechanical Properties of Mg-14Li-1Zn Alloy. Adv. Eng. Mater. 2019, 21. [Google Scholar] [CrossRef]
- Liang, S.; Guan, D.; Tan, X. The relation between heat treatment and corrosion behavior of Mg–Gd–Y–Zr alloy. Mater. Des. 2011, 32, 1194–1199. [Google Scholar] [CrossRef]
- Dobatkin, S.V.; Rokhlin, L.L.; Lukyanova, E.A.; Murashkin, M.Y.; Dobatkina, T.V.; Tabachkova, N.Y. Structure and mechanical properties of the Mg-Y-Gd-Zr alloy after high pressure torsion. Mater. Sci. Eng. A 2016, 667, 217–223. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, Y.; Qiu, X.; Wang, G.; Meng, F.; Hort, N.; Meng, J. Fabrication of a high strength Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy by thermomechanical treatments. Mater. Sci. Eng. A 2015, 622, 121–130. [Google Scholar] [CrossRef]
- Miura, H.; Maruoka, T.; Yang, X.; Jonas, J.J. Microstructure and mechanical properties of multi-directionally forged Mg–Al–Zn alloy. Scr. Mater. 2012, 66, 49–51. [Google Scholar] [CrossRef]
- Gan, W.; Huang, Y.; Wang, R.; Zhong, Z.; Hort, N.; Kainer, K.; Schell, N.; Brokmeier, H.-G.; Schreyer, A. Bulk and local textures of pure magnesium processed by rotary swaging. J. Magnes. Alloys 2013, 1, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Estrin, Y.; Martynenko, N.; Lukyanova, E.; Serebryany, V.; Gorshenkov, M.; Morozov, M.; Yusupov, V.; Dobatkin, S. Effect of Rotary Swaging on Microstructure, Texture, and Mechanical Properties of a Mg-Al-Zn Alloy. Adv. Eng. Mater. 2020, 22, 1900506. [Google Scholar] [CrossRef]
- Martynenko, N.; Luk’yanova, E.; Morozov, M.; Yusupov, V.; Dobatkin, S.; Estrin, Y.Z. A study of the structure, mechanical properties and corrosion resistance of magnesium alloy WE43 after rotary swaging. Met. Sci. Heat Treat. 2018, 60, 253–258. [Google Scholar] [CrossRef]
- Miura, H.; Yu, G.; Yang, X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng. A 2011, 528, 6981–6992. [Google Scholar] [CrossRef]
- Tong, L.; Chu, J.; Jiang, Z.; Kamado, S.; Zheng, M. Ultra-fine grained Mg-Zn-Ca-Mn alloy with simultaneously improved strength and ductility processed by equal channel angular pressing. J. Alloys Compd. 2019, 785, 410–421. [Google Scholar] [CrossRef]
- Jian, W.; Cheng, G.; Xu, W.; Yuan, H.; Tsai, M.; Wang, Q.; Koch, C.; Zhu, Y.; Mathaudhu, S. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater. Res. Lett. 2013, 1, 61–66. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, S.; Liu, C.; Gao, Y.; Jiang, S.; Chen, Z. Enhanced strength and corrosion resistance of Mg-Gd-Y-Zr alloy with ultrafine grains. Mater. Lett. 2018, 213, 274–277. [Google Scholar] [CrossRef]
- Fatemi-Varzaneh, S.M.; Zarei-Hanzaki, A.; Vaghar, R.; Cabrera, J.M. The origin of microstructure inhomogeneity in Mg–3Al–1Zn processed by severe plastic deformation. Mater. Sci. Eng. A 2012, 551, 128–132. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Zarei-Hanzaki, A.; Paul, H. Strain-induced nano recrystallization in AZ31 magnesium: TEM characterization. J. Alloys Compd. 2017, 699, 796–802. [Google Scholar] [CrossRef]
- Fatemi-Varzaneh, S.M.; Zarei-Hanzaki, A.; Cabrera, J.M. Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy. J. Alloys Compd. 2011, 509, 3806–3810. [Google Scholar] [CrossRef]
- Changizian, P.; Zarei-Hanzaki, A.; Ghambari, M.; Imandoust, A. Flow localization during severe plastic deformation of AZ81 magnesium alloy: Micro-shear banding phenomenon. Mater. Sci. Eng. A 2013, 582, 8–14. [Google Scholar] [CrossRef]
- Choi, S.H.; Shin, E.J.; Seong, B.S. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater. 2007, 55, 4181–4192. [Google Scholar] [CrossRef]
- Song, G.-S.; Zhang, S.-H.; Zheng, L.; Ruan, L. Twinning, grain orientation and texture variation of AZ31 Mg alloy during compression by EBSD tracing. J. Alloys Compd. 2011, 509, 6481–6488. [Google Scholar] [CrossRef]
- Wang, J.; Hirth, J.P.; Tomé, C.N. (012) Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 2009, 57, 5521–5530. [Google Scholar] [CrossRef]
- Wang, J.; Beyerlein, I.J.; Hirth, J.P. Nucleation of elementary { 0 1 1} and { 0 1 3} twinning dislocations at a twin boundary in hexagonal close-packed crystals. Model. Simul. Mater. Sci. Eng. 2012, 20. [Google Scholar] [CrossRef]
- Tang, L.; Liu, W.; Ding, Z.; Zhang, D.; Zhao, Y.; Lavernia, E.J.; Zhu, Y. Alloying Mg with Gd and Y: Increasing both plasticity and strength. Comp. Mater. Sci. 2016, 115, 85–91. [Google Scholar] [CrossRef]
- Zhu, L.; Seefeldt, M.; Verlinden, B. Deformation banding in a Nb polycrystal deformed by successive compression tests. Acta Mater. 2012, 60, 4349–4358. [Google Scholar] [CrossRef]
Samples | Misorientation | ||
---|---|---|---|
(2°–15°) | (55°–65°) | (80°–90°) | |
F-7 | 0.50 | 0.0712 | 0.1423 |
F-12 | 0.61 | 0.0633 | 0.0780 |
Samples | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | δ (%) |
---|---|---|---|
AE | 200 (6.1) | 310 (5.3) | 19 (1) |
F-7 | 266 (2) | 367 (4.4) | 9 (2) |
F-12 | 335 (4.4) | 397 (2.6) | 5 (1) |
Samples | Grain Size/μm | Micro Strain/% | Dislocation Density/m−2 | Work Hardening/MPa |
---|---|---|---|---|
F-7 | 12 | 0.163 | 0.047 × 1016 | 58 |
F-12 | 12 | 0.249 | 0.072 × 1016 | 72 |
Sample | Icorr (10−5 A/cm2) | Ecorr (V) |
---|---|---|
E | 2.630 | −1.6178 |
F-12 | 2.294 | −1.6071 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Liu, C.; Gao, Y.; Guo, X.; Wan, Y. Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy. Materials 2020, 13, 3181. https://doi.org/10.3390/ma13143181
Yang Z, Liu C, Gao Y, Guo X, Wan Y. Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy. Materials. 2020; 13(14):3181. https://doi.org/10.3390/ma13143181
Chicago/Turabian StyleYang, Zhengjiang, Chuming Liu, Yonghao Gao, Xueyi Guo, and Yingchun Wan. 2020. "Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy" Materials 13, no. 14: 3181. https://doi.org/10.3390/ma13143181
APA StyleYang, Z., Liu, C., Gao, Y., Guo, X., & Wan, Y. (2020). Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy. Materials, 13(14), 3181. https://doi.org/10.3390/ma13143181