Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy
Abstract
1. Introduction
2. Experimental Procedure
3. Results
3.1. Microstructure Evolution
3.2. Mechanical Properties and Strengthening Mechanism
4. Corrosion Resistance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, K.; Wang, J.; Qiu, M.; Gao, F.; Wu, R.; Hou, L.; Zheng, H.; Zhang, J.; Zhang, M. Effects of Cold Rolling on Microstructural Evolution and Mechanical Properties of Mg-14Li-1Zn Alloy. Adv. Eng. Mater. 2019, 21. [Google Scholar] [CrossRef]
- Liang, S.; Guan, D.; Tan, X. The relation between heat treatment and corrosion behavior of Mg–Gd–Y–Zr alloy. Mater. Des. 2011, 32, 1194–1199. [Google Scholar] [CrossRef]
- Dobatkin, S.V.; Rokhlin, L.L.; Lukyanova, E.A.; Murashkin, M.Y.; Dobatkina, T.V.; Tabachkova, N.Y. Structure and mechanical properties of the Mg-Y-Gd-Zr alloy after high pressure torsion. Mater. Sci. Eng. A 2016, 667, 217–223. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, Y.; Qiu, X.; Wang, G.; Meng, F.; Hort, N.; Meng, J. Fabrication of a high strength Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy by thermomechanical treatments. Mater. Sci. Eng. A 2015, 622, 121–130. [Google Scholar] [CrossRef]
- Miura, H.; Maruoka, T.; Yang, X.; Jonas, J.J. Microstructure and mechanical properties of multi-directionally forged Mg–Al–Zn alloy. Scr. Mater. 2012, 66, 49–51. [Google Scholar] [CrossRef]
- Gan, W.; Huang, Y.; Wang, R.; Zhong, Z.; Hort, N.; Kainer, K.; Schell, N.; Brokmeier, H.-G.; Schreyer, A. Bulk and local textures of pure magnesium processed by rotary swaging. J. Magnes. Alloys 2013, 1, 341–345. [Google Scholar] [CrossRef]
- Estrin, Y.; Martynenko, N.; Lukyanova, E.; Serebryany, V.; Gorshenkov, M.; Morozov, M.; Yusupov, V.; Dobatkin, S. Effect of Rotary Swaging on Microstructure, Texture, and Mechanical Properties of a Mg-Al-Zn Alloy. Adv. Eng. Mater. 2020, 22, 1900506. [Google Scholar] [CrossRef]
- Martynenko, N.; Luk’yanova, E.; Morozov, M.; Yusupov, V.; Dobatkin, S.; Estrin, Y.Z. A study of the structure, mechanical properties and corrosion resistance of magnesium alloy WE43 after rotary swaging. Met. Sci. Heat Treat. 2018, 60, 253–258. [Google Scholar] [CrossRef]
- Miura, H.; Yu, G.; Yang, X. Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng. A 2011, 528, 6981–6992. [Google Scholar] [CrossRef]
- Tong, L.; Chu, J.; Jiang, Z.; Kamado, S.; Zheng, M. Ultra-fine grained Mg-Zn-Ca-Mn alloy with simultaneously improved strength and ductility processed by equal channel angular pressing. J. Alloys Compd. 2019, 785, 410–421. [Google Scholar] [CrossRef]
- Jian, W.; Cheng, G.; Xu, W.; Yuan, H.; Tsai, M.; Wang, Q.; Koch, C.; Zhu, Y.; Mathaudhu, S. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater. Res. Lett. 2013, 1, 61–66. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, S.; Liu, C.; Gao, Y.; Jiang, S.; Chen, Z. Enhanced strength and corrosion resistance of Mg-Gd-Y-Zr alloy with ultrafine grains. Mater. Lett. 2018, 213, 274–277. [Google Scholar] [CrossRef]
- Fatemi-Varzaneh, S.M.; Zarei-Hanzaki, A.; Vaghar, R.; Cabrera, J.M. The origin of microstructure inhomogeneity in Mg–3Al–1Zn processed by severe plastic deformation. Mater. Sci. Eng. A 2012, 551, 128–132. [Google Scholar] [CrossRef]
- Fatemi, S.M.; Zarei-Hanzaki, A.; Paul, H. Strain-induced nano recrystallization in AZ31 magnesium: TEM characterization. J. Alloys Compd. 2017, 699, 796–802. [Google Scholar] [CrossRef]
- Fatemi-Varzaneh, S.M.; Zarei-Hanzaki, A.; Cabrera, J.M. Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy. J. Alloys Compd. 2011, 509, 3806–3810. [Google Scholar] [CrossRef]
- Changizian, P.; Zarei-Hanzaki, A.; Ghambari, M.; Imandoust, A. Flow localization during severe plastic deformation of AZ81 magnesium alloy: Micro-shear banding phenomenon. Mater. Sci. Eng. A 2013, 582, 8–14. [Google Scholar] [CrossRef]
- Choi, S.H.; Shin, E.J.; Seong, B.S. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater. 2007, 55, 4181–4192. [Google Scholar] [CrossRef]
- Song, G.-S.; Zhang, S.-H.; Zheng, L.; Ruan, L. Twinning, grain orientation and texture variation of AZ31 Mg alloy during compression by EBSD tracing. J. Alloys Compd. 2011, 509, 6481–6488. [Google Scholar] [CrossRef]
- Wang, J.; Hirth, J.P.; Tomé, C.N. (012) Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 2009, 57, 5521–5530. [Google Scholar] [CrossRef]
- Wang, J.; Beyerlein, I.J.; Hirth, J.P. Nucleation of elementary { 0 1 1} and { 0 1 3} twinning dislocations at a twin boundary in hexagonal close-packed crystals. Model. Simul. Mater. Sci. Eng. 2012, 20. [Google Scholar] [CrossRef]
- Tang, L.; Liu, W.; Ding, Z.; Zhang, D.; Zhao, Y.; Lavernia, E.J.; Zhu, Y. Alloying Mg with Gd and Y: Increasing both plasticity and strength. Comp. Mater. Sci. 2016, 115, 85–91. [Google Scholar] [CrossRef]
- Zhu, L.; Seefeldt, M.; Verlinden, B. Deformation banding in a Nb polycrystal deformed by successive compression tests. Acta Mater. 2012, 60, 4349–4358. [Google Scholar] [CrossRef]
Samples | Misorientation | ||
---|---|---|---|
(2°–15°) | (55°–65°) | (80°–90°) | |
F-7 | 0.50 | 0.0712 | 0.1423 |
F-12 | 0.61 | 0.0633 | 0.0780 |
Samples | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | δ (%) |
---|---|---|---|
AE | 200 (6.1) | 310 (5.3) | 19 (1) |
F-7 | 266 (2) | 367 (4.4) | 9 (2) |
F-12 | 335 (4.4) | 397 (2.6) | 5 (1) |
Samples | Grain Size/μm | Micro Strain/% | Dislocation Density/m−2 | Work Hardening/MPa |
---|---|---|---|---|
F-7 | 12 | 0.163 | 0.047 × 1016 | 58 |
F-12 | 12 | 0.249 | 0.072 × 1016 | 72 |
Sample | Icorr (10−5 A/cm2) | Ecorr (V) |
---|---|---|
E | 2.630 | −1.6178 |
F-12 | 2.294 | −1.6071 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Liu, C.; Gao, Y.; Guo, X.; Wan, Y. Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy. Materials 2020, 13, 3181. https://doi.org/10.3390/ma13143181
Yang Z, Liu C, Gao Y, Guo X, Wan Y. Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy. Materials. 2020; 13(14):3181. https://doi.org/10.3390/ma13143181
Chicago/Turabian StyleYang, Zhengjiang, Chuming Liu, Yonghao Gao, Xueyi Guo, and Yingchun Wan. 2020. "Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy" Materials 13, no. 14: 3181. https://doi.org/10.3390/ma13143181
APA StyleYang, Z., Liu, C., Gao, Y., Guo, X., & Wan, Y. (2020). Enhanced Mechanical and Corrosion Performance by Forming Micro Shear Bands in Cold Forged Mg-Gd-Y-Zr Alloy. Materials, 13(14), 3181. https://doi.org/10.3390/ma13143181