Next Article in Journal
Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging
Previous Article in Journal
Simple, Accurate and User-Friendly Differential Constitutive Model for the Rheology of Entangled Polymer Melts and Solutions from Nonequilibrium Thermodynamics
Open AccessArticle

Performance of Short Fiber Interlayered Reinforcement Thermoplastic Resin in Additive Manufacturing

1
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2
State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science & Technology, Beijing 100044, China
*
Author to whom correspondence should be addressed.
Materials 2020, 13(12), 2868; https://doi.org/10.3390/ma13122868
Received: 18 May 2020 / Revised: 19 June 2020 / Accepted: 22 June 2020 / Published: 26 June 2020
To further improve the mechanical properties of thermoplastic resin in additive manufacturing (AM), this paper presents a novel method to directly and quantitatively place the short fibers (SFs) between two printing process of resin layers. The printed composite parts with SFs between the layers was reinforced. The effects of single-layer fiber content, multi-layer fiber content and the length of fibers on the mechanical properties of printed specimens were studied. The distribution of fibers and quality of interlayer bonding were assessed using mechanical property testing and microstructure examination. The results showed that the tensile strength of the single-layered specimen with 0.5 wt% interlayered SFs increased by 18.82%. However, when the content of SFs continued to increase, the mechanical properties declined because of the increasing interlayered gap and the poor bonding quality. In addition, when the interlayered SFs length was 0.5–1 mm, the best reinforcement was obtained. To improve the interfacial bonding quality between the fiber and the resin, post-treatment and laser-assisted preheating printing was used. This method is effective for the enhancement of the interfacial bonding to obtain better mechanical properties. The research proves that adding SFs by placement can reduce the wear and breakage of the fibers compared to the conventional forming process. Therefore, the precise control of the length and content of SFs was realized in the specimen. In summary, SFs placement combined with post-treatment and laser-assisted preheating is a new method in AM to improve the performance of thermoplastic resin. View Full-Text
Keywords: 3D printing; thermoplastic resin; additive manufacturing; composite 3D printing; thermoplastic resin; additive manufacturing; composite
Show Figures

Figure 1

MDPI and ACS Style

Fan, C.; Shan, Z.; Zou, G.; Zhan, L.; Yan, D. Performance of Short Fiber Interlayered Reinforcement Thermoplastic Resin in Additive Manufacturing. Materials 2020, 13, 2868.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop